TECHNICAL ISO/TR
REPORT 80002-2

First edition
2017-06

Medical device software —

Part 2:
Validation of software for medical
device quality systems

Logiciels de dispositifs medicaux —

Partie 2: Validation des logiciels pour les systémes de qualité des
dispositifs médicaux

Reference number
ISO/TR80002-2:2017(E)

© 1S0 2017

ISO/TR 80002-2:2017(E)

COPYRIGHT PROTECTED DOCUMENT

© 150 2017, Published in Switzerland

All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized otherwise in any form
or by any means, electronic or mechanical, including photocopying, or posting on the internet or an intranet, without prior
written permission. Permission can be requested from either [SO at the address below or ISO’s member body in the country of

the requester.
[SO copyright office
Ch. de Blandonnet 8 « CP 401
CH-1214 Vernier, Geneva, Switzerland

Tel. +41 22 749 01 11
Fax +41 22 749 09 47

copyright@iso.org
www.iso.org

i © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Contents Page
FOT@WOIM ...ttt iv
IIUETOAUICTION ..o '
1 o0 0 1SS 1
2 NOTIMATIVE F@E@T@IICES ... 1
3 Terms and defimitioNS ...t s 1
4 Software validation diSCUSSTIONL... ...t s st 1
4.1 D RIIIITION st £ 1

4.2 Confidence-building activities: Tools in the tooIbOX ... 1

4.3 0 1 (o) I D01 2

5 Software validation and critical thinKing ... 2
5.1 O WETVIRWooeeeeecsacsoosissios e85 55550505 o 2

5.2 Determine if the SOftWare iS iN SCOPE ... s s 6

5.2.1 Document a high-level definition of the process and use of the software ... 6

5.2.2 Regulatory USE ASSESSIMIEIIT ...o.ocvoiiiiiiiieiioiisiaiisooisiissees s sss oo 6

5.2.3 Processes and software extraneous to medical device regulatory requirements... 6

5.3 DeVelOPMENT PRASE ... e 7

5.3.1 Validation PIANIEIIIE. ... sssissssssess s ssssssssees s s ssssss s sssssines 7

o TG 70) T3 i o U 7

5.3.3 Implement, test and deploy ... 11

5.4 MaIntaIn PRASE ettt 13

5.4.1 Entering the maintenance phase ... 13

54.2 Planning for MaintenanCe ... s s 14

54.3 Types of maintenance within the maintain phase. ... 15

54.4 Process changes: Change to risk control measures ..., 15

545 Emergency Change et 15

54.6 Maintaining for intended USe ... 16

o T8 S =1 1 =) 0 U= 0 103 =T <O 16

6 DOCUIMICIIEATTON ettt ettt 16
7 Prer@QUISITE PIrOCESSESt s 8 17
ANnex A (INfOrmative) TOOIDOX s 18
Annex B (informative) Risk management and risk-based approach ... 24
Annex C (informative) EXamPles. et 28
BABIEOBIAPIIY ... 84

© IS0 2017 - All rights reserved 11l

ISO/TR 80002-2:2017(E)

Foreword

ISO (the International Organization for Standardization) is a worldwide federation of national standards
bodies (ISO member bodies). The work of preparing International Standards is normally carried out
through ISO technical committees. Each member body interested in a subject for which a technical
committee has been established has the right to be represented on that committee. International
organizations, governmental and non-governmental, in liaison with 1S0O, also take part in the work.
ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of
electrotechnical standardization.

The procedures used to develop this document and those intended for its further maintenance are
described in the ISO/IEC Directives, Part 1. In particular the different approval criteria needed for the
different types of ISO documents should be noted. This document was drafted in accordance with the

editorial rules of the ISO/IEC Directives, Part 2 (see www.iso.org/directives).

Attention is drawn to the possibility that some of the elements of this document may be the subject of
patent rights. ISO should not be held responsible for identifying any or all such patent rights. Details of
any patent rights identified during the development of the document will be in the Introduction and/or

on the ISO list of patent declarations received (see www.iso.org/patents).

Any trade name used in this document is information given for the convenience of users and does not
constitute an endorsement.

For an explanation on the voluntary nature of standards, the meaning of ISO specific terms and
expressions related to conformity assessment, as well as information about ISO’s adherence to the
World Trade Organization (WTO) principles in the Technical Barriers to Trade (TBT) see the following
URL: www.iso.org/iso/foreword.html.

This document was prepared by Technical Committee ISO/TC 210, Quality management and
corresponding general aspects for medical devices, in collaboration with Technical Committee IEC/TC 62,
Electrical equipment in medical practice, Subcommittee SC 62A, Common aspects of electrical equipment
used in medical practice, in accordance with ISO/1EC mode of cooperation 4.

A list of all parts in the ISO 80002 series can be found on the ISO website.

v © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Introduction

This document has been developed to assist readers in determining appropriate activities for the
validation of process software used in medical device quality systems using a risk-based approach that
applies critical thinking.

This includes software used in the quality management system, software used in production and

service provision, and software used for the monitoring and measurement of requirements, as required
by ISO 13485:2016: 4.1.6, 7.5.6 and 7.6.

This document is the result of an effort to bring together experience from medical device industry
personnel who deal with performing this type of software validation and who are tasked with
establishing auditable documentation. The document has been developed with certain questions and
problems in mind that we all go through when faced with validating process software used in medical
device quality systems such as the following: What has to be done? How much is enough? How is risk
analysis involved? After much discussion, it has been concluded that in every case, a set of activities (i.e.
the tools from a toolbox) was identified to provide a level of confidence in the ability of the software
to perform according to its intended use. However, the list of activities varied depending on factors
including, among others, the complexity of the software, the risk of harm involved and the pedigree
(e.g. quality, stability) of vendor-supplied software.

The intention of this documentis to help stakeholders, including manufacturers, auditors and regulators,
to understand and apply the requirement for validation of software included in ISO 13485:2016, 4.1.6,
7.5.6 and 7.6.

© ISO 2017 - All rights reserved v

TECHNICAL REPORT ISO/TR 80002-2:2017(E)

Medical device software —

Part 2:
Validation of software for medical device quality systems

1 Scope

This document applies to any software used in device design, testing, component acceptance,
manufacturing, labelling, packaging, distribution and complaint handling or to automate any other
aspect of a medical device quality system as described in ISO 13485.

This document applies to

— software used in the quality management system,

— software used in production and service provision, and

— software used for the monitoring and measurement of requirements.

It does not apply to
— software used as a component, part or accessory of a medical device, or

— software thatis itself a medical device.

2 Normative references

There are no normative references in this document.

3 Terms and definitions
For the purposes of this document, the terms and definitions given in ISO 9000 and ISO 13485 apply.
ISO and IEC maintain terminological databases for use in standardization at the following addresses:

— |EC Electropedia: available at http://www.electropedia.org/

— SO Online browsing platform: available at http://www.iso.org/obp

4 Software validation discussion

4.1 Definition

The term “software validation” has been interpreted both broadly and narrowly, from just testing to
extensive activities including testing. This document uses the term software validation to denote all
of the activities that establish a level of confidence that the software is appropriate for its intended use
and that it is trustworthy and reliable. The chosen activities, whatever they might be, should ensure
that the software meets its requirements and intended purpose.

4.2 Confidence-building activities: Tools in the toolbox

The tools in the toolbox (see Table A.1 to Table A.5) include activities completed during the life cycle of
software that reduce risk and build confidence.

© IS0 2017 - All rights reserved 1

ISO/TR 80002-2:2017(E)

4.3 Critical thinking

This document promotes the use of critical thinking to determine which activities should be performed
to adequately validate specific software. Critical thinking is a process of analysing and evaluating
various aspects of software, as well as the environment in which it will be used, to identify the most
meaningful set of confidence-building activities to be applied during validation. Critical thinking
avoids an approach that applies a one-size-fits-all validation solution without thoroughly evaluating
the solution to determine if it indeed results in the desired outcome. Critical thinking recognizes that
validation solutions can vary greatly from software to software and also allows for different validation
solutions to be applied to the same software in a similar situation. Critical thinking challenges
proposed validation solutions, to ensure that they meet the intent of the quality management system
requirements, and considers all key stakeholders and their needs. Critical thinking is also used to re-
evaluate the validation solution when characteristics of the software change, when the software’s
intended use changes or when new information becomes available.

Critical thinking results in a validation solution that establishes compliance for a manufacturer,
ensures that the software is safe for use, results in documented evidence that is deemed appropriate
and adequate by reviewers, and results in a scenario in which individuals performing the validation
work feels that the effort adds value and represents the most efficient way to reach the desired results.

Annex C presents example studies demonstrating how critical thinking can be applied to software
validation of software used in medical device quality systems in a variety of situations, including
different complexities, pedigrees and risk levels.

5 Software validation and critical thinking

5.1 Overview

Throughout the life cycle of software for medical device quality systems, appropriate controls need
to be in place to ensure that the software performs as intended. Incorporation of critical thinking and
application of selected confidence-building activities result in establishing and maintaining a validated
state of the software. Figure 1 depicts a conceptual view of typical activities and controls that are
part of the life cycle from the moment the decision is made to automate a process until the software is
retired or is no longer used for medical device quality systems. Although Figure 1 depicts a sequential
model, in reality, the process is of an iterative nature as elements are defined, risks are identified and
critical thinking is applied.

When developing software for use in the medical device quality system, a fundamental confidence-
building activity to be selected from the toolbox is the choice of software development life-cycle model.
The model chosen should include critical thinking activities that enable the selection of other appropriate
tools during various life-cycle activities. The results of the analyses and evaluations used drive the
selection of the most meaningful set of confidence-building activities to ensure that the software
performs as intended. This document does not mean to imply or prescribe the use of any particular
software development model. For simplicity, however, the remainder of this document explains the
concepts of critical thinking within the context of a waterfall development model using generic names
for the phases. Other software development models (e.g. iterative, spiral) can certainly be used as long
as critical thinking and the application of appropriate tools are incorporated into the model.

2 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Software for medical device quality systems

Life-cycle controls

Development ——| Maintenance ——| Retirement

Implement/
Define S End use
deploy
. J
Establish long-
Software validation Maintain a t:r; afcesﬂsr'::g
(establishing a validated state) validated state

e-records

Iterative change management

Iterative risk analysis

Figure 1 — Life-cycle controls

When considering using software in a process, one should identify whether the proposed software is
used as part of a medical device quality system process through an investigation of its intended use.
If so, then the software should be validated for its intended use. Although this document describes an
approach to validating software for medical device quality systems, the same approach is also good
practice for software to evaluate whether it fulfils defined requirements. The most critical part of
software validation is developing/purchasing the right software tool to be able to support processes
as intended by the manufacturer. This implies that requirements should be determined accurately
to evaluate whether the developed/purchased software is suitable to fulfil the requirements of the
intended use. Technical requirements suitable for verification, as well as process requirements suitable
for validation, are equally important. When considering using software in a process, the software can
interact or can have interfaces with other software.

During the development phase of the life cycle, risk management and validation planning tasks are
performed to gather information and drive decisions in the following four areas:

— level of effort applied and scrutiny of documentation and deliverables;
— extent of content in the documentation and deliverables;

— selection of tools from the toolbox and methods for applying the tools;
— level of effort in applying the tools.

The primary drivers for decisions in the four areas are process risk and software risk. However, other
drivers can influence decisions, including the complexity of the software and process, the type of
software and the software pedigree.

The validation planning process consists of two distinct elements. The first validation planning element
involves determining the level of rigor in the documentation and the scrutiny to be applied to the
review of the resulting deliverables. The decisions in this element are primarily driven by the results

© IS0 2017 - All rights reserved 3

ISO/TR 80002-2:2017(E)

of the process risk analysis. The second validation planning element drives the selection of tools from
the toolbox to implement, test and deploy the software. The choice of tools is driven primarily by the
software risk analysis. Such planning steps result from different types of risk analyses and are depicted
as separate activities in this document. However, many times the steps are combined into one activity,
which includes the different aspects of risk analysis and the resultant choices for proceeding with
validation.

During the development phase of the life cycle, risk management and validation planning tasks are used
to define the appropriate level of effort to be applied to the software and to determine what confidence-
building tools to apply. This type of approach results in the completion of appropriate value-added
activities and verification tasks, which are the basis for establishing a validated state. Once these
activities and tasks are executed, the tools and their associated results are cited in a validation report
as support for the conclusion that the software is validated.

Once deployed, the software moves into the maintenance phase of the software life cycle. During
this period, the software is monitored, enhanced and updated as dictated by the business needs or
regulatory requirement changes. Change control activities use the same concepts as the initial approach
that was applied during the development phase of the life cycle. Changes, however, are now assessed as
to their effect on the intended use, on the risk of failure, on the risk control measures that were applied
during the initial development and on any functionality of the software itself.

The retirement phase is the act of removing software from use either by removal of the process or by
replacement of the software being used for the process.

The activities shown in Figure 1 reflect the primary software life-cycle control activities. Other work
streams include project management, process development, vendor management (if applicable), and
possibly others, depending on the software being implemented.

Figure 2 depicts software life-cycle control activities and critical thinking within the context of
other work stream activities. The critical thinking activities appear in the iterative risk analysis and
validation work streams. It is important to have clear and formal definitions of these work streams
within the organization’s business model to ensure that a program properly manages the software
from both business and regulatory perspectives.

4 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Validation
Process
Define process
requirements 1 Procest |
i 0 definidon -:
I I
¥ :
Down- | Analysis of process|
e | 7] failurerisks | |
| | v
| , |
) | | r:k:]lh;lu{ld and
= | I severiny ol
= | I halrm ;
& I I Define SW intended
= | l | - e
| l 1N . Validation |
I I planning I
Likelihonad and I
Ilnw:;trr:a.m i |
fr contrl s or vedficat ons h'a{m
= | '
- | | |
E | | |
= | | |
E | | I 4. Software ____I
T | | req uirements
8 | ¥ 4
= I
!_______._ Analysis of SW
failure risks T
T '__"-:DMro]Ied-:
| ¥ L J
2 [
E" Legend | nc!:l hood and
i A Validation J
: Il e5 risk conkrod SeRerity of = = = j=|p R
E.._ mol?ﬂ ures as activitles such as harTer: pl:mnmg
'E'ﬂ‘ cnde reviews and in desi gn su dch — = SwW imp]EI'l'lEl'ltﬂ.tiﬂIl
I as watchdog timers ete. Also L —— [design dEl"Ell:l-p
P in du des direchon for targelng = !
] areas to testand type of tests to] build & test]
= he wmed. |
- |
E OUPUL = — = |
o | Resulis
= Info ”’l"“*’“ Validation report b& —— —!
E L— 4 input |
|
I Software release
= = ACepance— = — — =
1]
]
=
o
=
2
)
£
o
=
.
SW retired
=
=i
g o)
st
T _End
=4
NOTE When the term “develop” or “development” is used, it is about the development of a validated state of

the software.

Figure 2 — Life-cycle controls work stream

The various colours depicted in Figure 2 correspond to the life-cycle portion that is shown in the
overall approach flow chart in Figure 1. The red dashed lines indicate information that is outputted
from one activity and that provides input to or helps drive decisions in another activity. The diagram
demonstrates how the ordering of the activities is driven by the need to have input information
before completing the activities that require the input. It is important to note that all the activities
are completed irrespective of the size or complexity of the software being implemented. However, for

© IS0 2017 - All rights reserved 5

ISO/TR 80002-2:2017(E)

larger or more complex software, such activities will most likely be discrete; for smaller or simpler
software, many of those activities will be combined or completed simultaneously.

In summary, the critical thinking approach described a systematic method for identifying and including
appropriate confidence-building activities or tools in various work streams to support the conclusions
that the software is validated on release and that the validated state will be maintained until the
software is retired.

The following subclauses provide additional details for each of the blocks found in the life-cycle controls
depicted in Figure 1. The subclauses use the work stream depiction of iterative risk analyses, validation
and software activities shown in Figure 2 to provide perspective on the various decision points and
decision drivers that incorporate critical thinking.

5.2 Determine if the software is in scope

5.2.1 Document a high-level definition of the process and use of the software

The first step in determining whether the software is considered to be used for medical device quality
systems is to document a high-level definition of the process and use of the software. This activity might
seem of small value when it is readily known that the software is in scope and one is already embarking
on defining the full intended use of the software. However, for situations in which such assumptions are
less clear, documenting the process and use enables the clear determination as to whether the software
is in scope. In addition, for identified out-of-scope software, such an activity can result in a rationale as
to why the software is out of scope.

5.2.2 Regulatory use assessment

A regulatory use assessment can be used to determine whether the software is a “software for medical
device quality system” and therefore falls within the scope of this document. Start by identifying the
specific regulatory requirements that apply to the processes that use the software and the data records
that are managed by the software. A series of questions can be used to help fully understand the role
that the software plays in support of these regulations. The following types of questions should be
considered.

a) Could the failure or latent flaws of the software affect the safety or quality of medical devices?

b) Does the software automate or execute an activity required by regulatory requirements (in
particular, the requirements for medical device quality management systems)? Examples may
include capturing electronic signatures and/or records, maintaining product traceability,
performing and capturing test results, maintaining data logs such as CAPA, non-conformances,
complaints, calibrations, etc.

A “yes” answer to any of the questions identifies software that is required to be validated and is within
scope of this document.

At times it can be difficult to determine whether a process and corresponding software are part of
the quality system. Some tools can have many degrees of separation from the actual medical device.
Each organization should, therefore, carefully consider the circumstances surrounding such borderline
software and should completely understand the impact of the failure of the software on the processes
and, ultimately, on the safety and efficacy of any manufactured medical devices. When the answer is
not certain, the best approach is to consider the software as in scope and to apply the approach defined
in this document.

5.2.3 Processes and software extraneous to medical device regulatory requirements

When processes or software contain functionality that falls outside of medical device regulatory
requirements, an analysis should be performed to determine which parts of the software are considered
to be in scope and which parts are not in scope. Such decisions should be rationalized on the basis of the
degree of integration between various components, modules and data structures of the software and in

6 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

accordance with the compliance needs of the organization. This rationalization is especially important
in the case of software used in support of the quality system, such as large, complex enterprise resource
planning (ERP) software. ERP software can include functionality for non-medical device-regulated
processes such as accounting and finance. Although such functionality can be crucial for business
operations and have to meet certain government requirements (e.g. those of the Sarbanes-Oxley Act).

5.3 Development phase

5.3.1 Validation planning

The first part of the validation planning activity captured when critical thinking is applied, uses input
from the process risk analysis (see Annex B) to establish the basis for the level of effort that should be
applied to the documentation and to drive the choices of tools from the Define section of the toolbox
(see Table A.1 to Table A.5). The second part uses input from the software risk analysis to drive the
choices of the implement, test and deploy tools from the toolbox. Once executed, the activities and the
validated state of the software are established, and evidence of the validation is documented in the
validation report.

Many development life-cycle models can be applied during the development phase. None is advocated
or recommended by this document; however, application of a controlled methodology is expected. Such
a controlled methodology would be based on the concept of defining requirements (including intended
use), before implementation, testing and deployment, which are fundamental to establishing the
validation of the software for its intended use.

5.3.2 Define

5.3.2.1 Define block requirement

The activities completed within the define block include the definition of the process, the definition of
the software intended use within that process and the planning for the level of validation effort based
on the inherent risks identified within the process. Figure 3 depicts this portion of the development
phase within the selected waterfall model example.

© IS0 2017 - All rights reserved 7

ISO/TR 80002-2:2017(E)

Validation
Process
Defineprocess | | | process] |
requirements definition }
- |
BN :
| |
Jown [, | Analysis of process | _ :
contruls | failure risks | |
I i '
<] | | |
= | Li keliho od and
= | | severity of
= | | " Define SW
= o l | | intzr:gzd use
veriaton | HEN wilivpiitn |
' | planning I
= I ! I
o | Likelihood and |
severityof |
u | hari |
E I ‘ |
Q. | : I
o | | |y Software JI
E | | R requirements |
S | I
L] |
-] R v
| Analysis of SW
g failure risks
v \ j

Figure 3 — Life-cycle phase: Define block work streams

5.3.2.2 Process requirements

The first step in the application of life-cycle controls is to define the purpose and function of the entire
process, particularly the portions intended to be controlled by the software. This is best performed
by involving the appropriate subject matter experts and including all aspects and activities associated
regardless of whether all will be controlled by the software. Benefits are explained below:

— regulatory requirements can be clearly discerned;
— intended use of the particular software within the context of the process can be clearly discerned,;

— process aspects and activities not controlled by the particular software can be clearly identified
and addressed procedurally or by some other means;

— process activities upstream and downstream from the software are identified and can be considered
when assessing the risks of the software failure and in devising risk controls for software failure.

The process definition activity establishes the foundation for decisions that are made later in the life
cycle and is essential to targeting efforts on value-added, risk-based activities.

8 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

5.3.2.3 Analysis of process failure risk

The relationship of the software to the final safety and efficacy of the medical product will be considered
during the risk analysis process. The following should also be considered.

— Risk of harm to humans: This includes direct harm to patients and users, and indirect harm when
software controlling manufacture or quality of the device malfunctions, resulting in failure of the
device, which causes harm.

— Regulatory risk: Risk of non-compliance with regulatory requirements to be considered if failure
of the software can lead to loss of records (e.g. CAPA, complaint, device master record or device
history file records) required by regulatory agencies or to deviations from quality system and
manufacturing procedures.

— Environmental risk: Risk to the environment in which the software operates. Both the physical and
the virtual.

Other types of risks can be incorporated into this model. However, the scope of this document and the
tools discussed to reduce risk do not address them. This document focuses on the determination of the
human safety risks, regulatory risks and environmental risks associated with software failure within
the context of process failure.

The results of risk analysis should be clearly documented because such results are valuable decision
drivers for selecting tools from the toolbox and for justifying the level of effort applied to the validation
activities.

5.3.2.4 Validation planning

The extent of confirmation and objective evidence needed to ensure that the requirements of the
software can be consistently fulfilled depends on the critical value of the software within the overall
process. Therefore, the first validation planning activity regarding the level of effort applied and the
scrutiny of the deliverable elements is based solely on input from the process failure risk analysis.

This validation planning activity results in a first iteration of validation planning documentation.
The planning includes the selections for “level of effort” (i.e. the decisions) and the rationale for those
choices (i.e. the decision drivers). The rationale should be based on the risk of harm posed by a failure of
the process. The validation plan should provide objective evidence of the application of critical thinking
to the validation planning process.

5.3.2.5 Software intended use

5.3.2.5.1 Elements of intended use

The intended use is meant to provide a complete picture of the software functionality and its purpose
within the process. Specifically, it is meant to describe and explain how the software fits into the overall
process that it is automating, what the software does, what one can expect of the software and how
much one can rely on the software to design, produce and maintain safe medical devices. The intended
use is a key tool used to understand what potential risks are associated with the use of the software.

The three main elements of intended use are:
— purpose and intent related to
— the software’s use (e.g. who, what, when, why, where and how),
— theregulatory use of the software, and
— the boundaries of the software within the process or with other software and /or users;

— software use requirements. As the complexity and, generally, the risk increases, this element adds
more detailed information regarding the use of the software (e.g. use cases, user requirements);

© IS0 2017 - All rights reserved 9

ISO/TR 80002-2:2017(E)

— software requirements. As the complexity and risk increase to the point where clear direction
should be provided to implementers of the software, this element provides more specific and
detailed information regarding the expectations of the software.

The intended use should be formally controlled and approved by properly skilled and experienced
personnel on regulations, quality system and the process being controlled.

Given that we should validate for “intended use”, validation cannot be accomplished unless the intended
use for the software is sufficiently defined.

The following subclauses provide further details about the elements of the software intended use.

5.3.2.,5.2 Software purpose and intent
[t contains information covering three elements: software use, regulatory use and boundary definitions.

a) Software use

— When defining the use of the software, one should consider the following questions: what, why, how,
who, where and when. The answers explore how the software is being used to meet the process
requirements. Such exploration helps to identify base information for the definition of the software

as shown in Table 1.

— The answers that are meaningful to the description of the software should be included in the
established intended use definition.

Table 1 — Sample questions and answers

Question Answer
What problem is the There is a problem in efficiently and accurately pooling product defect data for
software addressing? trending purposes.

Why is the software useful? |The software enables the pooling and trending of data from global locations.

How does the software solve | The software drives the process of data collection and automatically pools and

the problem? calculates trending information or the software does not drive the process
but provides a passive collection of data used to pool and calculate trending
information.

Who uses the software? The Quality Assurance and Operations Departments use the software.

Where is the software used? |The software is accessed by locations in the United States, Europe and Japan.

When is the software used? |The software is accessed during normal business hours for the global locations
(i.e. daily, Monday to Friday).

NOTE These sample questions are not exhaustive.

b) Regulatory use

— When evaluating the regulatory use, one can further explore the questions answered to determine
if the software is in scope (see 5.2). Expand all “yes” answers to include the reasons for these
conclusions. Now that the software has been identified as in scope, any potential harm to humans
(other than the users of the medical device) or to the environment needs to be determined. All
the following questions direct the user’s consideration towards elements that are required as part
of regulations, such as public health, safety and validity or authenticity of electronic records and
signatures.

— How could the failure or latent flaws of the software affect the safety or quality of medical
devices?

— How does the software automate or execute an activity required by regulation, in particular,
the requirements for medical device quality management systems?

10 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

— How could the software cause harm to people (other than the users of the medical device) or to
the environment?

c) Software boundaries

— Defining the parts of the process that are to be controlled through software (boundaries within the
process) and the places where software interfaces exist (boundaries with other software) facilitates
the effectiveness and efficiency of the validation efforts. For example, it often can be more efficient
to validate multiple software products as a group rather than to perform individual validations. One

should also consider how various grouping strategies can affect efficiencies of ongoing maintain
phase activities.

— Boundaries within the process

— Identifying the boundaries of the software within the process clearly establishes the aspects
that are to be included in the intended use. Software can automate an entire process or can
automate a subset of activities and can also function as a repository of data for the process.
Understanding the role that the software plays with in the process helps to determine the risks
associated with a potential failure of the software.

— Boundaries with other software

— When externally interfaced with other medical device quality systems software or with
medical device software, it is important to identify all interfaces between the applications.
Validation efforts typically include the internal interfaces as an inherent part of the method
but the software’s external interfaces should not be ignored. All interfaces between software
applications should be incorporated into the critical thinking process.

5.3.2.5.3 Software use requirements

Software use requirements consist of well-documented and traceable elements that provide an
additional layer of details to the software’s purpose and intent. Such requirements provide insight into
the use scenarios of the system, from either a user’s perspective or a product-needs perspective. The
user’'s perspective can be captured in the form of user requirements, use cases or other user-centric
definition of needs. The product-needs perspective captures the needs of the medical device that is
being affected by the system and can, in some cases, include a reference to specific device requirements
or a synopsis of the product lines that the software might affect.

5.3.2.5.4 Software requirements

Consists of activities to define elements, well-documented and traceable, that specify what the software
needs to do in order to meet its purpose, intent and use requirements. Software requirements comprise
the input to the system’s design, to the system’s configuration, as well as the input to testing activities.

5.3.3 Implement, test and deploy

5.3.3.1 Required activities

The activities completed within the implement, test and deploy block include
a) planning of the level of validation rigor in the design,

b) development and configuration,

c) building of the software, and

d) testing of the software based on risks identified.

© IS0 2017 - All rights reserved 11

ISO/TR 80002-2:2017(E)

5.3.3.2 Analysis of software failure risks

The key point of software failure risk analysis is to determine and document the inherent risks
associated with software failure and to identify any control measures (including process and software
controls outside the software under analysis). The analysis is then used to arrive at a realistic and
effective validation approach.

When reviewing risks attributable to software failure, one considers any process controls outside the
software under analysis that constitute risk control measures. Such risk control measures can reduce
the impact of a software failure, thus reducing the dependency on the software and thereby reducing
the reliance on testing (examination) and documentation (collection of objective evidence) to ensure
the safe operation of the software. Including such considerations will help ensure that the software is
viewed within the context of the overall process.

A model presented in Annex B does not represent an all-encompassing formula. The resulting analysis
provides input into the choice of tools from the toolbox to be used for the software validation.

5.3.3.3 Validation planning

This activity uses the intended use definition and the results of the software risk analysis as inputs to
the identification of risk control measures and the selection of tools from the toolbox that will be used
to validate the software.

It is important that the tool selection process include qualified individuals who have an understanding
of the impact of failure on the process and the inherent risks of failure of the software that will
automate that process, although the individuals need not be software experts. Individuals from various
disciplines (regulatory, quality, clinical and the like) should be involved in the planning process for any
software that is highly complex or that has a high risk associated with its failure.

The validation planning activity results in a documented plan that describes the choices made
(decisions) and the reasons for the choices being made (decision drivers). Validation planning provides
documented evidence of the rationale used to select value-added confidence-building activities used to
ensure that the software will perform as intended.

5.3.3.4 Software implementation (design, development, building and test)

This block includes the actual application of many tools from the toolbox. The tools (activities required
as identified in the validation plan) are carried out during the design, development, building and test

steps (see Figure 4).

12 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Validation
Process
e
b
B|E
Q L
=JI=
(-
L Analysisof SW | | Riskstohe
<P failure risks control led
S|} [:
Q|5 | !
= | Y
oy | +
- |
£ uﬁf&hﬂ:’f ;fd_ I I Validation SW implementation
::' harm planning 4 - — »| (design, develop,
= |- build and test)
QL I_ _
E |
e l |
& i
E Results
= |
Validation report {4+ — v
| Software release
|— — Acceptance4+ — — —J»

a Includes risk control measures as activities such as code reviews and in design such as watchdog
timers, etc. Also includes direction for targeting areas to test and type of tests to be used.

Figure 4 — Life-cycle phase: Implement, test and deploy block work streams

5.3.3.5 Validation report

Once sufficient confidence-building activities, including tools selected from the toolbox, have been
completed to ensure that the software performs as intended, the activities and (possibly) the results of
the activities should be cited in a final validation report. The formal review and approval of the report
provide a summary of references to all documented objective evidence that supports the conclusion
that the software has been validated for its intended use.

5.3.3.6 Software release

Concluded the validation, a formal controlled method should exist for releasing the software. The
defined controls should ensure and confirm that the software placed into use matches the software
that has been assessed through the confidence-building activities cited in the validation report. If
not, the rationales and controls should ensure and confirm that the results sufficiently represent the
performance of the released software in its intended environment.

5.4 Maintain phase

5.4.1 Entering the maintenance phase

Phase entrance criterion: Software maintain phase starts after software is released for use.

© IS0 2017 - All rights reserved 13

ISO/TR 80002-2:2017(E)

Activities scope: Maintain phase activities consist of ensuring that the software remains in a validated
state while accommodating, managing and controlling various types of changes. Some types can involve
only changes to the process within which the software is used.

Changes to any validated system should be done in a controlled manner in accordance with policies and
procedures.

Ideally, it 1s recommended that changes be made in a test environment and are validated before
promoting the system to production use. When validating the change in a test environment is not
possible and testing of changes should occur in the production environment, appropriate controls
should be in place to minimize unwanted impacts to the production environment or directly to the
product.

The selection of which tools from the toolbox are to be used in validating the change should be
determined by the impact analyses of software changes on existing risk control measures by the
introduction of new risks or by both.

Since the actual use of the software or its configuration can migrate over time despite efforts to control
it, the use of maintain phase-specific tools, such as periodic monitoring of actual use or real-time
monitoring of software configuration, might be appropriate. If a change in intended use results in a
higher risk level, the change can trigger a more extensive set of validation activities than was originally
performed, even without changes to the software.

Decisions regarding the choices and evidence of the execution of more extensive validation activities
should be documented as part of validation planning to provide evidence that the software remains in
a validated state.

5.4.2 Planning for maintenance

Maintenance planning evidence should be recorded before starting maintain phase.

[deally, maintenance planning begins during the development phase. One should properly understand
how changes will affect software validation, examine the effect of changes on risk and plan the proper
activities to maintain validation.

Large and complex software might have to accommodate day-to-day maintenance and performance-
tuning activities without affecting the software’s ability to perform as intended. Planning for
maintenance during the development phase can define which of the operational activities can be done
without affecting validation and which changes require validation efforts. Before the software arrives
at the maintain phase, methods of determining when to perform further validation activities on the
software should be planned and discussed, including how changes in an underlying software (e.g.
operating system, database management system) might affect the validated software. It is helpful to
train software operators to recognize such boundaries and to recognize the difference between normal
operational activities and any changes requiring validation.

Traceability analysis is a useful tool in managing maintenance activities. Traceability analysis is
frequently a cornerstone of the initial validation and is often facilitated through a traceability matrix.
The matrix maps requirements for tests or other verification activities, risk control measures and so
forth. If performed well during the initial implementation, traceability analysis becomes a valuable tool
during maintenance by facilitating the identification of the impact of changes and of the appropriate
activities to validate the changes. In simple software, such analysis can consist of a single-level
trace of requirements to implementation and verification. However, complex software can require a
multilevel matrix that decomposes top-level functionality into lower-level requirements and then into
implementation and verification. Other information can also be embedded, for example, sections of the
software that are considered particularly high risk can be designated within the trace matrix, possibly
with additional validation activities indicated.

14 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

5.4.3 Types of maintenance within the maintain phase

There are a number of reasons why the software would change after it is released for use. Some of the
more common types of maintenance changes include the following:

— corrective maintenance changes made to correct errors and faults in the software;

— perfective maintenance changes to enhance performance, maintainability or other software
attributes;

— adaptive maintenance done to update the software operational environment (e.g. changes to
operating system, system hardware or other applications with which the software interfaces).

5.4.4 Process changes: Change to risk control measures

When the process that is wholly or partially controlled by software change, an impact analysis should
be done to re-evaluate risk control measures.

The process that is wholly or partially controlled by software can change independently of the software.
When a process change occurs, itis important to understand how that change affects the validated state
of the software. The process change can affect the intended use of the software or of other supporting
information regarding the software.

The process change can also affect the risk control measures in place for the software that are part
of the validation rationale. Because the software is part of a process, downstream controls might be
important risk control measures for the software. If the downstream controls are properly identified
as part of the software validation rationale and process definition, the impact analysis for the proposed
process change will be easier to perform. Impact analysis is essential to performing maintenance in a
way that builds confidence in both the software and the process within which the software is operating.

5.4.5 Emergency change

Emergency changes should be governed by approved processes. These processes should require
the justification for development and implementation, the mechanisms for gaining and recording
authorization to deploy the change, the provisions to ensure that the risk has been properly
assessed and controlled, and any activities necessary to invoke the emergency change (e.g. training,
communication, product review and disposition). In this circumstance, performing the provisions for
properly assessing and controlling risks represents the minimum set of activities needed to meet the
regulatory requirement for the validation of changes prior to release.

Software changes might need to be performed under emergency circumstances. Typically, such changes
are required if the integrity of the software, operating system or data has been compromised or to
facilitate mitigation of potential harmful situations.

Additional, post-emergency change activities might be needed to fully evaluate all effects of the change.
Depending on the overall risk posed by a failure of the process, process output (data or product) might
need additional controls until all post-emergency change activities are complete.

Software problems that interrupt a process are usually obvious. Detecting subtle, underlying problems
can be more difficult. Periodic evaluation of error logs, help centre requests, customer feedback
and other defect reports can point to underlying problems. Such monitoring techniques can pick up
problems that are not obvious enough to result in an error report but that can indicate correctable
software problems. Maintenance activities might then be necessary to deal with identified problems
by implementing corrections in future releases. Additionally, issues in released software that are
attributed to these types of software problems can be proactively managed.

After the maintenance activities correct the problems for future releases, the historical impact of
identified defects in released software should be reviewed and their consequences managed.

© IS0 2017 - All rights reserved 15

ISO/TR 80002-2:2017(E)

If the software validation depends on ensuring the correct usage of the software through training,
periodic evaluation of user training effectiveness is another monitoring technique that helps to
maintain the validated state.

5.4.6 Maintaining for intended use

If there is a change in the intended use of the software, it should be validated for the new intended use
or the new use should cease. In the latter case, a risk assessment is in order to make sure no risks were
introduced during the period of unauthorized use.

Change in intended use is a category that requires special attention because the change could be subtle
and hard to detect or it could be quite obvious. In the subtle case, a change occurs to the purpose and
intent or to the software use requirements and does not necessarily cause a change to the detailed
software requirement element (see 5.3.2.5). Such a change might occur intentionally or as a result
of simply using existing software in a new mode without realizing that the intended use has been
affected. Intended use could migrate over time or users can start using the software in a way that was
not originally intended. Because of this shift, the deployed software is no longer in a validated state.

Each time a change is initiated to validated software, the intended use should be reviewed to ensure
that it is still consistent with the actual use of the software.

5.5 Retirement phase

During the retirement phase, it should be documented the decommissioning of the software and to
establish methods for accessing any associated electronic records throughout any required record
retention periods.

Software retirement activities are highly dependent on the type of software being retired. Some
software simply performs an activity and does not store any data. Other software can be as complex as
a lot traceability or document control system, which houses volumes of product-related and compliance-
related data. In the instance of software that stores data, a plan should exist for handling the data. Some
issues to consider include the following.

— Is there software replacing the retired software?

— (Can the data be migrated to the new software?

— Should the data be migrated to a portable format for long-term retention?
— What are the data retention requirements for the type of data?

— Will the data be stored on durable media?

— If so, what are the storage instructions or procedures and can the data be retrieved containing all
associated data requirements?

— Whatis the procedure for maintaining durable media and software that can read it?
— Will an archived hardware platform be stored for using and retrieving the retired application?

— How will stored hardware be maintained?

— Would the retired software ever need to be accessed as part of a complaint or CAPA investigation?

— Will the platform and application be needed to re-create a software program?

6 Documentation

It should be ensured that all information associated with the software life-cycle control activities is
appropriately documented and controlled.

16 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Two major benefits arise from having high-quality and efficient documentation.

a) Complete software definition thatis clearly articulated in documentation enables full understanding
of the software’s intended use and expected performance and it enables the understanding of the
full impact of any and all changes made to the software.

b) Record of validation planning and execution provides documented evidence of the decisions made
as a result of critical thinking. Focusing this documentation around the evaluations or analyses
performed and the resulting tool selections that target risk-based and meaningful confidence-
building activities provides for a succinct understanding of the validation that was performed.
With a summary of how the acceptance criteria were met, the documentation provides evidence
that the activities completed ensure the software performs as intended and introduces acceptable
levels of risk to the process it automates.

The extent of documentation produced is directly related to the level of effort applied to the validation of
the software. The level of effort should be commensurate with risk. Therefore, the software validation
approach discussed in this document bases the extent of documentation on the impact of the process
failure. The greater the risk of harm to persons or to the environment posed by the process, the greater
the extent of documentation expected. In addition, the higher risk of harm should drive a higher level
of scrutiny of the documentation by multiple cross-functional peers, by higher levels of management
within the company or by both.

The organization of the life-cycle control information into documentation can vary depending on many
factors, such as the technology used and the size or complexity of the software.

The information should be organized in a manner that facilitates the auditing of the information along
with the ability to maintain evidence of a validated state during the maintain phase of the software
life cycle.

How life-cycle control information is captured and documented depends on preferences and established
policies of the parties performing the validation. Discretion is given to the parties validating the
software regarding how the objective evidence of life-cycle controls is packaged and presented
in documentation. From a compliance review perspective, the validation planning and reporting
documentation should be established to provide a compilation of all value-added, confidence-building
activities that were planned and executed in order to ensure that the software performs as intended.
Essentially, this documentation is the key record of the choices made (decisions) on the basis of inputs
(decision drivers) that embody the critical thinking process used to confirm that a complete software
solution has been developed that meets the intent of the regulation and considers all key stakeholders
and their needs.

NOTE The term “documentation” is used to refer to the body of information that is recorded, whether it is
recorded in an actual document or in tools that capture the information, such as requirements management tools.

7 Prerequisite processes

The methodology presented in this document is intended to operate fully within an effective quality
management system in order to be more effective.

The aspects of a quality system that can have the most positive effect on the success of the critical
thinking methodology include asset and infrastructure management (human and hardware), change
management (including configuration management) and vendor management. Detailing those aspects
is outside the scope of this document; each aspect is addressed in other standards and documents
within industry (see Bibliography). In addition, this document does not intend to associate specific
roles or functions (e.g. quality assurance, management and manufacturing) with the activities in this
document. Each company’s philosophy and human resource infrastructure will dictate the acceptable
roles for performing validation activities.

© IS0 2017 - All rights reserved 17

ISO/TR 80002-2:2017(E)

Annex A
(informative)

Toolbox

A.1 General

This toolbox provides a list of confidence-building activities that can be conducted to satisfy the
intent of the requirement with regard to validation. It is not meant to be an exhaustive list of available
activities for this purpose, but it provides a starter set based on the current software engineering body
of knowledge. Some of these activities overlap or work together, for example, normal case testing is
often a part of software system testing, but the focus here is on the value of the activity. The activities
are to be used as a foundation for validation planning and execution.

Selection and conduction of activities should be appropriate for the risk associated with the software.
To support this selection, the activities in the toolbox are categorized and marked as such according to
the following scheme.

— Full extent: Conduct this activity as is in any case.
— Tailor: Select and conduct the appropriate parts of this activity.
— Select: Select and conduct activity where appropriate.

A toolbox can be customized to define the activities used in your organization and can evolve over time
as technology changes and as lessons are learned, thus incorporating new software engineering best
practices. Where applicable, some of the activities would also be procedurally called out in standard
procedures.

A.2 Toolbox structure

The activities are organized for convenience into five main software life-cycle process activities.
Depending on the scope and nature of the software, critical thinking should be applied at various stages
in the software life cycle to identify and select the activity most appropriate to the software.

For each named activity appearing in the list, there is a short definition and a description of the value
that the activity contributes to the validation effort. The definition column also contains examples of
methods one can use to accomplish the named activity.

18 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Table A.1 — Development phase: Define

Activity

Definition

Process requirements definition
(Full extent)

Activity for the definition of the process under consideration for partial or
full automation by software, a manufacturing process or a quality system
process. Activity also describes any verification or preventive measures
within the process that can be considered when performing process or
software risk analysis.

The output from this activity can be documented in a process flow schematic
or requirement statements that define the activities performed within the
business, manufacturing or quality system process.

Process failure risk analysis
(Full extent)

Activity for determination of the impact of process failure on device safety
and efficacy, manufacturing personnel, the environment or the quality system.

Intended use
(Tailor)

Activity for simple software can consist of a few sentences or paragraphs. For
large, complex software, activity can include extensive documentation across
multiple documents and might include detailed software requirements. Risk
is also an important factor in determining the depth of the intended use
definition.

Elements of intended use:

software purpose and intent;

software use requirements;

software requirements.

Validation planning
(Full extent)

Validation planning is performed in two phases:

during the develop-define phase to define the level of detail and effort
expected in validation documentation, the level of scrutiny and to select the
activities to be included in the define phase;

later, during the implementation phase, to select the appropriate
validation activities on the basis of decisions made during the define
phase and associated risk analysis activities.

The output from validation planning is a plan that describes the activities
that will be performed to establish confidence that the software consistently
meets the requirements of its intended use.

Formal software requirements
review
(Select)

Activity (process, meeting, etc.) in which stakeholders review and agree on
software requirements based on intended use.

Software development life-cycle
model choice

(Select)

Activity for the definition of the life-cycle methodology and controls to be
used during the development portion of the total software life cycle. Usually

needed only for complex or risky software. IEC 62304:2006/AMD1:2015
might be particularly appropriate as a process standard for some software.

Risk management planning
(Full extent)

Activity related to planning how the risk management for the software will
be performed. The output of risk management planning is a plan defining

an approach for analysis of areas of concern for the software relative to risk
and a choice of methods by which to analyse risks, such as failure modes and
effects analysis (FMEA), fault tree analysis or other tools.

[dentification of risk control
measures within the
manufacturing or business
process

(Full extent)

This activity is a mechanism to identify measures to control risks or hazards
(e.g. procedural controls). It includes continuous monitoring to make sure
that the controls are in place and working properly.

© ISO 2017 - All rights reserved

19

ISO/TR 80002-2:2017(E)

Table A.2 — Development phase: Implement

Activity

Definition

Analysis of software failure
(risk analysis)
(Full extent)

Analysis of software failure refers to the determination of the impact of
software failures relative to the process and to the areas of concern
identified in the analysis of process failures.

Software architecture
documentation and review
(Select)

Software architecture defines the high-level structure of the software
elements of software and the relationship between them, documenting the
architecture and reviewing for correctness, completeness and ability to
perform software functions.

Design specification
(Select)

Design specification is a precise statement of how the software requirements
will be implemented. It typically includes software or component structure,
algorithms, control logic, data structures, data set use information, input and
output formats, interface descriptions and the like.

Development and design review
(Select)

Development and design review is a review conducted to evaluate the
progress, technical adequacy and risk resolution of the selected design
approach for one or more configuration items.

[dentification of risk control
measures within the software
design

(Full extent)

This activity identifies measures to control risks or hazards that were
identified during the risk assessment. [dentification of risk control measures
should be an iterative process to allow continuous monitoring and to ensure
that the controls are in place and working properly (e.g. procedural controls,
hardware redundancy).

Code review or code
verification
(Select)

Code review or code verification consists of a peer review of software source
code intended to find and remove defects and improve overall code quality.
Code reviews and overall code quality can be enhanced by establishing and
adhering to a set of common coding standards.

Traceability analysis
(Select)

Traceability analysis refers to traceability of requirements to design, to code,
to testing, to risk or hazard analysis and to risk control measures. It might
also include traceability to process requirements.

Vendor audit
(Select)

Vendor audit means assessment of software vendor systems to the level
necessary to ensure the purchaser that the vendor is sufficiently capable of
supplying safe and usable software. A variety of vendor audit methods are
possible.

Table A.3 — Development phase: Test

Activity

Definition

Test planning
(Select)

Test planning should define the overall approach to the testing activities that
help build confidence that the software meets its intended use. However,
software testing by itself might not be sufficient to establish confidence that
the software is fit for its intended use. Other verification techniques might need
to be combined with testing to ensure a comprehensive validation approach.

The level of testing should be based on the risk drivers and factors and should
provide the appropriate level of confidence to demonstrate that the software
meets the requirements and design specifications in accordance with the
appropriate testing methods. Such testing can include developer testing, unit

testing, integration testing, user testing, load testing, operational testing and
the like.

Unit testing

Testing conducted to verify the implementation of the design for one software

(Select) element (e.g. a unit or module) or a collection of software elements.
Data verification Data verification refers to activities completed to confirm the correctness of
(Select) data. It might be done as part of a data migration, conversion, or testing effort

or independently, and it can include statistical sampling where appropriate.

Integration testing

Integration testing is an orderly progression of testing in which software

(Select) elements, hardware elements, or both are combined and tested to evaluate
their interactions until the software has been integrated.
20 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Table A.3 (continued)

Activity

Definition

Use case testing
(Select)

Use case testing is a form of functional testing that ignores the internal
mechanism or structure of a system or component and focuses on the outputs
generated in response to selected inputs and execution conditions. Each use
case can have input parameters associated with it and each parameter can
have a set of values identified to simulate actual use conditions. A series of use
cases can be connected using predetermined flows that describe a sequence
that accomplishes some goal.

Interface testing
(Select)

Interface testing refers to the confirmation of the interface between software
applications, taking into account the entire data transfer path from output to
input. Interface testing can be accomplished through direct testing or 100 %
data verification. Testing activities should include strategies that ensure that
the interface performs as required at the specification limits or at boundary
conditions for both normal and abnormal cases.

Regression testing
(Select)

Rerunning test cases that a program has previously executed correctly in
order to detect errors spawned by changes or corrections made during
software development and maintenance.

Vendor-supplied test suite
(Select)

Vendor-supplied test suites can test the full capability of a software solution
and can provide significant confidence in the performance of the software

in the end-use environment. However, such suites should be assessed for
appropriateness to the defined intended use and completeness of the testing,
including testing for any risk control measures in place. Use of such a suite
could require a contractual agreement requiring the vendor to maintain the
test suite for the life of the software.

Software system testing
(Select)

Software system testing is the process of testing an integrated hardware and
software system to verify that the software meets its specified requirements.
Such testing can be conducted in both the development environment and the
target environment.

Software validation differs from software system testing because software
validation verifies the suitability of the software for use in its intended
environment and by its intended users. Software system testing verifies only
that the requirements for the software have been successfully implemented.

For production systems controlled by software, process validation testing can
cover some or all of these tests. For quality systems applications, performing
all the steps required by the software work instruction could cover the
software test requirements.

Use case testing

Use case testing refers to testing performed on the basis of use cases,

(Select) including alternative flows and error conditions defined in those use cases.
Normal case testing Normal case testing is testing with usual inputs.
(Select)

Robustness testing
(stress testing)
(Select)

Robustness testing should demonstrate that a software product behaves
correctly when given unexpected, invalid inputs. It is conducted to evaluate a
system or component at or beyond the limits of its specified requirements.

Methods for identifying a sufficient set of such test cases include equivalence
class partitioning, boundary value analysis and special case identification
(error guessing).

Output forcing testing
(Select)

Output forcing testing means choosing test inputs to ensure that selected (or
all) outputs are properly generated by the system.

Output forcing involves making a set of test cases designed to produce a
particular output from the system. The focus is on creating the desired
output, not on the input that initiated the system response.

© ISO 2017 - All rights reserved

21

ISO/TR 80002-2:2017(E)

Table A.3 (continued)

Activity

Definition

Combination of inputs testing
(Select)

Combination of inputs testing is a testing technique by which a combination
of inputs that a software unit or system might encounter during operation is
exercised.

Beta testing

Beta testing is testing by the vendor in a live environment for a small set of

(Select) clients.
Performance testing Performance testing measures how well the software system executes in
(Select) accordance with its required response times, central processing unit (CPU)

usage and other quantified features in operation.

Table A.4 — Development phase: Deploy

Activity

Definition

User procedure review
(Select)

User procedure review is the review of the user procedures and instructions
related to the use of the software. Such a review ensures that the use of the
software is properly defined.

Internal training for the
application
(Select)

Internal training refers to documented training activities specific to the
software.

Installation qualification
(Select)

Installation qualification means establishing confidence that the software is
installed and functioning according to the documented installation
instructions.

Operational and performance
qualification (when process
validation is performed)
(Select)

Operational qualification establishes confidence that the manufacturing
process and associated systems are capable of consistently operating within
established limits and tolerances.

Performance qualification establishes effectiveness and reproducibility of the
process.

Final acceptance testing
(Select)

Final acceptance testing refers to tests applied to the system just before final
deployment. It is also known as go-live testing,.

Operator certification
(Select)

Operator certification is confirmation that trained individuals show evidence
of competence in the training.

Table A.5 — Maintain phase

Activity

Definition

Maintenance planning
(Tailor)

Methods associated with maintenance planning are as follows.

Forward planning. This method covers the forward planning and anticipation
of changes to the software. This method can be used during the initial
implementation of the software before entering the maintain phase, butit also
can be used at any time during the maintain phase.

Planning for pending changes. This method covers planning done when a
change to the software is pending. The planning typically focuses on
activities specific to the pending change. This planning is done during the
maintain phase of the software.

Known issues analysis
(Select)

Known issue analysis is a process by which any and all issues with the
software that are known by the vendor are assessed as to their impact to the
use or validated state of the installed software.

Compatibility testing

Compatibility testing is the process of determining the ability of two or more

(Select) software systems to exchange information.

Infrastructure compatibility Infrastructure compatibility analysis is the process of determining how
analysis changes to software infrastructure can affect the installed software. These
(Select) changes could include changes to hardware or to the location of the system.

22 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Table A.5 (continued)

Activity

Definition

System monitoring
(Select)

System monitoring includes techniques used to evaluate the general health
of the software system during the maintain phase of the software life cycle.
Methods for system monitoring can include the following:

— periodic assessment of whether intended use has changed;
— actual use by end users;

— training effectiveness evaluation;

— defect analysis;

— data auditing.

Backup and recovery processes
(Select)

Backup and recovery processes include system backups, storage and
retention of backed-up media, and recovery procedures for restoring data
from backup media.

Operational controls
(Select)

In addition to backup and recovery processes, monitoring and reporting,
operational controls can be used to help ensure the software is operating as
intended. Common methods include the following:

— security;

— accessrights administration;
— database administration;

— archiving;

— contingency planning.

Regression analysis
(Select)

Regression analysis includes tasks such as traceability analysis or impact
analysis. It is conducted to determine the required activities for maintaining
the validated state of the system.

© ISO 2017 - All rights reserved

23

ISO/TR 80002-2:2017(E)

Annex B
(informative)

Risk management and risk-based approach

B.1 General

As mentioned in the core part of the document, the content and rigor of validation is determined by the
risk associated with the software.

In order to expand on this concept refer to [SO 14971. ISO 14971 describes a risk management process
to be applied for medical devices. However, the underlying principles, as well as the terminology, can be
applied to the software that is subject to ISO 14971.

B.2 Terminology

The definitions listed below have either been taken from ISO 14971 or are based on the definitions in
[SO 14971.

— hazard: potential source of harm;

— hazardous situation: circumstance in which people, property or the environment are exposed to
one or more hazard(s);

— risk: combination of the probability of occurrence of harm and the severity of that harm;
— harm: physical injury or damage to the health of people or damage to property or the environment;
— severity: measure of the possible consequences of a hazard,;

— risk control measure: measures by which risks are reduced to, or maintained within, specified levels.

B.3 Basic principle

The basic principle is to reduce the risks associated with the software to an acceptable level. In order to
accomplish this, the manufacturer needs to identify possible hazardous situations with the use of the
software, estimate the associated risks and evaluate if these risks meet acceptance criteria which, if not
given otherwise, e.g. by regulations, are defined by the manufacturer.

Especially as software cannot harm on its own, the whole process that is controlled by the software is
subject to risk management.

B.4 Identification of hazardous situations and estimation risks

Following the approach of ISO 14971 starting with intended use, the possible hazards and hazardous
situations should be identified and the associated risks should be estimated. However, the possible
harm to consider is quite different from that under consideration in ISO 14971.

Failure of production and quality system seldom results in direct harm to a patient or user of the
medical device whose manufacture or quality is controlled by software. The harm in this context is
almost always indirect. It is the harm to the device that ultimately becomes a source of harm to the
patient or user of the device. This is not to say that indirect harm is in any way less severe. In fact, in
some ways, the severity of failure of production and quality systems could be considered to be more
severe simply because a single failure in these systems could lead to failures in many devices, ultimately

24 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

harming many patients before it is detected. A failure of software in a single device can harm only one
patient at a time.

Both direct and indirect multiple harms can result from failure of production or quality systems. Note
that the harms in the list that follows are not mutually exclusive. Each has the potential for indirect
harm to patients or users of a medical device. Examples include, but are not limited to, the following:

— harm to the medical device:
— amachine tool does not produce a critical tolerance;
— a calibration system miscalibrates a medication delivery device;
— asterilizer controller fails in a way that non-sterile components are produced;
— failure of a final test system does not detect latent device flaws;
— harm to the manufacturing process:

— a failure of a process controlled by software slows production rates as manual workarounds
are used:

— afailure of software-driven processes creates a high percentage of out-of-tolerance parts;
— harm to regulatory compliance:

— acomplaint-handling system misreports failure statistics, thus allowing field-reported defects
to go undetected,;

— adevice service or repair system fails to highlight trends for issues that could point to previously
undetected defects;

— aloss of integrity occurs to a database for implanted devices;

— aloss of quality control records relating to safety checks on manufactured items occurs;
— aloss of compliance data occurs;

— aloss of device validation data occurs;

— an inability to control and report the configuration of software in manufactured devices
happens;

— afailure of an MRP system to provide traceability results in failure to notify potential users of
device safety recalls;

— harm to manufacturing personnel or the environment:
— an operator is injured;
— toxic chemicals are released.

All categories of harm should be considered in analysing the risks associated with depending on
software to automate production and quality systems.

Estimation of risk comprises of the estimation of the severity of the possible harm and the likelihood of
occurrence of that harm.

Estimation of severity is usually done by a classification (see e.g. ISO 14971:2007, Annex D or G.4 which
connect to the acceptance level (see B.5).

[t might turn out that it is difficult to estimate the likelihood of harm especially when looking at
likelihood of software faults contributing to the harm. In this case, it should be kept in mind that a
software fault is only one factor leading to a harm and several other factors outside the software might

© IS0 2017 - All rights reserved 25

ISO/TR 80002-2:2017(E)

be involved (sequence of events). It is useful to assume a worst case for unknown likelihoods of events
and finally a worst case of likelihood of harm.

A similar approach is taken by IEC 62304:2006/AMD1:2015. As the basis for the decision about the
rigor of process controls, it assumes a worst case likelihood of faults of the software but allows for

consideration of lower likelihood of harm associated with a sequence of events beyond the software
(see also IEC/TR 80002-1).

B.5 Risk evaluation

Once the risks have been estimated, they need to be evaluated to see if they are acceptable or not. If
not, the manufacturer should identify and implement risk control measures to reduce the risk to an
acceptable level.

Perhaps the most difficult activity in risk management is determining what is an acceptable level of
risk. Such a determination is highly dependent on the severity of potential harm. Each manufacturer
needs to establish criteria for defining and documenting the acceptability of a risk and for identifying
all risks in a format that will allow for evaluation of conformance to those criteria. In general, if an
acceptable risk is reduced to a level that one is comfortable in defending to one’s peers, management or
auditors, then the risk is probably set at an appropriate level.

It is beyond the scope of this document to recommend acceptability thresholds, but a few
recommendations on the process of setting them are appropriate.

— Be specific. Acceptance criteria such as “as low as possible” or “as safe as any other product” are not
useful. Acceptance criteria should read like testable specifications, so thatitis possible to objectively
determine if the criteria for acceptability have been met.

— Where it is difficult to estimate the likelihood of harm, the acceptance criteria can be based on
severity only.

— Acceptance criteria can relate to predefined selection of software process controls (i.e. selection of
tools listed in Table A.1 to Table A.5).

— Identify acceptance criteria early. Set the goal or specification as soon as the potential risk of harm
is identified. It is important to set the acceptability goals before any attempt is made to control the
risk. The perception of acceptability often migrates to higher risk levels once an attempt has been
made to control the risk. Documenting acceptability criteria in advance keeps the process from
migrating.

— Document your rationale for determining the acceptability of risks. Such documentation is useful
for future maintenance of the process and for communication of the thought process to regulatory
investigators.

B.6 Risk control

B.6.1 Unacceptable risk

If the risk has been evaluated as not acceptable, the manufacturer should identify and implement risk
control measures to reduce the risk to an acceptable level. These risk control measures can affect the
software or other parts of the process.

B.6.2 Risk control measures not affecting the software

Examples of risk control measures not affecting the software are procedural changes, hardware
redundancy, backup systems, monitoring systems, output verification (downstream verification) or
vendor inspections.

26 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Often, embedded production process software is difficult to access and few details are available
from the manufacturer. A common example is software embedded in a machine tool that is used in
the fabrication of a medical device. Validation of this type of software for intended use can be difficult
when the software is validated on a stand-alone basis.

A risk control measure that works particularly well in these situations is downstream verification of
the outputs of the software or of the outputs of the device controlled by the software. In other words,
one can directly determine the suitability of the software for its intended use by monitoring the outputs
of the software-controlled process for any and all potentially harmful defects. Such an approach could
substitute for inferring the suitability of the software for its intended use by applying life-cycle control
methodologies. This methodology is practical only for processes that have a reasonably small number
of critical operations that can be checked on each part or on a statistically determined sampling of
parts. The validation engineer should detail the rationale for substituting downstream verifications
and any assumptions used to justify choosing sampled verification over continuous verification, and
those assumptions should then be tested.

Downstream verification should be documented just as any other risk control measure would be
documented. In particular, it is important to document that the verification process is a risk control
measure so that it is not eliminated in cost-cutting measures at a later time. Furthermore, downstream
verification results should be documented because the definition of validation require “provision of
objective evidence” of validation, and this verification step substitutes for a large part of the validation.
As the product evolves, the intended use of the software-controlled process can also evolve. As an
example, consider a machine tool that initially performed one critical operation on a component of a
medical device. Later, the medical device design was slightly modified in such a way that two critical
operations were required of the software-driven machine tool. The intended use of the machine tool
changed (two safety-critical operations versus one safety-critical operation), and consequently the
downstream verification should change to verify both operations.

Downstream verification can be accomplished by manual operations or other human operations.
Examples might include visual inspections for burred edges or mechanical alignments and manual
measurements for mechanical tolerances or electrical continuity. Regardless of the nature of the test,
if it is a downstream verification of a software-controlled process and if it is used as a risk control
measure for that process, then the verification test should be documented. The test procedure for the
human tester should be detailed with clearly defined passing and failing ranges of results for each
parameter tested. The testers should also provide documented evidence that they have executed the
procedures to test the process outputs.

B.6.3 Risk control measures affecting the software
Risk control measures affecting the software are either

— design changes, or

— process controls.

In the context of this document, selection of process controls is also referred to as rigor of validation

and means selection of tools defined in Table A.1 to Table A.5.

Preferably, well-understood risk control measures outside the software, e.g., “"downstream verification”,
as well as software design changes, should be implemented before just relying on process controls.
However, a minimum set of process controls should be applied, especially in order to provide confidence
in proper implementation of software design changes as risk control measures.

B.6.4 Verification of risk control measures and evaluation of residual risk

The implementation of risk control measures should be verified. Risk control measures beyond process
controls should be verified for effectiveness. In this case, the residual risk should be evaluated for
acceptability.

© IS0 2017 - All rights reserved 27

ISO/TR 80002-2:2017(E)

Annex C
(informative)

Examples

This document applies to software used to automate parts of quality systems and manufacturing
processes, including the generation, measurement, assessment or management of data intended for
regulatory submission, quality system, production and data processing. Other intended uses might
include the direct or indirect capture of data from instruments, operation and control of equipment
and the processing, reporting and storage of data. For those different activities, software can vary
from software contained in a programmable logic controller (PLC) or a personal computer (PC) to
software contained in a laboratory information management system (LIMS) with multiple functions.
The following are some examples of intended uses:

— software that makes pass/fail decisions on product;

— software used for custom record-keeping within the quality system;

— data manipulation and analysis software used for product submissions;

— data manipulation and analysis software used for reporting to regulatory agencies;
— any software development tools or compilers used for regulated-process software;

— any software tool or subordinate software tool responsible for qualifying and verifying life-critical
software;

— any software used for component, product or patient traceability within the quality system;

— any “software of unknown origin” (i.e. no knowledge of the quality and robustness of the software
is available) used for the above-mentioned purposes.

The examples presented in this annex represent an attempt by the authors of this document to offer
practical, realistic examples of software that a medical products manufacturer might encounter. The
best way to experience the critical thinking approach and to appreciate the variability across software
types, software risks and intended uses is to offer these examples.

Note the following qualifiers.

— The examples used here include the results of critical thinking as performed by the authors of this
document and represent an acceptable level of validation effort and rigor that will add value and
provide confidence that software will function as intended. Readers are strongly encouraged to
consider what activities and level of effort make sense from an engineering perspective, as well
as to determine the required rigor based on the key factors for software used for medical device
quality management system processes.

— There is always more than one way to establish confidence in the appropriateness of the validation
effort. The examples presented in this document provide a methods-based approach that is based
on current thinking and the experience of the authors of this document.

— Readers are strongly encouraged to view the authors’ efforts as neither authoritative nor
prescriptive. The examples cited are similar in format only for the presentation of the data and
include key thought processes to demonstrate the use of critical thinking. This layoutis notintended
for use as a validation template, nor does it contain all the depth and detail that would be expected
for actual validation documentation.

28 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

— The examples used assume that the prerequisite processes identified in Clause 6 are presentand are
in good working order. Although the examples do not contain extensive reference to the prerequisite
processes, those processes should be in place to ensure that the software and all associated aspects,
such as documentation and other infrastructure, are subject to change control.

— Each example begins by clearly defining the process to be controlled. Therefore, it has already been
determined that the process and, hence, the software are in scope. Critical thinking activities are
then identified and summarized.

— The examples used here are meant to provide information about the decisions and drivers of
decisions used in the critical thinking process and do not necessarily represent the comprehensive
validation of the software discussed.

— Anycompany names, teams or individuals used in the examples are purely fictitious and are included
only to facilitate the discussion.

The examples used here are generally focused on bringing a particular system into a validated state.
Although establishing a validated state for a system is of great importance, maintaining the validated
state during the maintenance phase of the system is also vital to ensuring the proper operation of
software and surrounding processes. Maintenance activities require the same controls and critical
thinking as are required by the initial validation activities.

© IS0 2017 - All rights reserved 29

ISO/TR 80002-2:2017(E)

Example 1: Programmable logic controller (PLC) for manufacturing equipment
Background

The Tubing Supply Company has been contracted to supply a major medical device manufacturer with
tubing for its intravenous (IV) systems. The company has received the specifications for the tubing,
including requirements for the tubing to be formed into a proprietary shape. This special tube-shaping
requirement will be performed at the Tubing Supply Company as part of the manufacturing process for
its tubing segments.

This tubing formation process is of particular concern to the supplier because the tubing formation is
a unique process that the supplier does not currently have the machinery to perform. It is decided that
a customized piece of equipment with a programmable logic controller will be developed to perform
this task. This equipment and the PLC contained in it should be validated for their intended uses, as
required by the medical device company's policies.

Defining the process

The tubing supply company and the device manufacturer establish a team of people to define the
process by which the tube will be formed. The process defined in the meeting uses temperature and
pressure to form a shape in a piece of plastic tube. The steps include the following:

a) obtain materials;

b) insertinto machine;

c) deform tube to proper diameter through pressure and heat;
d) allow cooling of tube;

e) remove tube from machine;

f) measure tube for proper diameter.

Analysing the process risk

The medical device manufacturer has communicated to the Tubing Supply Company that the following
issues and associated hazards arose from the risk analysis process.

— Lack of good connection to the fluid bag results in a leak that is not hazardous but could have a risk
of caregiver slippage. Leakage could also delay treatment.

— Cosmetic issues could affect customer acceptance and cause delay of treatment.
— Potential exists for the operator to be burned during the tube-forming process.

Prior to mitigation, there is moderate level of risk associated with product failure because of the
hazards of caregiver slippage, delay of treatment and operator burns.

The following process risk control measures are currently in place:

— upstream operations, such as incoming inspection and line clearance, to ensure that the tubing is
acceptable for use;

— downstream verification checks, including leak testing, in-process inspection and test fittings, that
mitigate equipment error;

— a shield, an independent temperature sensor and a coolant sprayer put in place to prevent
operator injury.

Using this information, the supplier works with the medical device manufacturer to conclude that there
is a low residual risk of failure of the tubing as a result of the tube-forming process.

30 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Defining the software purpose and intent

The Tubing Supply Company knows that to validate software for its intended use, intended use should
first be defined. To achieve consensus on what the equipment is meant to do, the team members ask
themselves a series of questions intended to determine a succinct but usable definition of the system's

purpose and intent. They produce the following statement.

— The software-controlled equipment is intended to automate steps 2 to 6 of the defined process. The
system is intended for use in facility B, manufacturing line 3, for the creation of PN 001. The system

will automate the insertion, forming, removal and measurement of tubing for an IV for the delivery
of general, non-hazardous solutions.

Validation planning

The first step in planning for validation involves determining the rigor and review of deliverables.
Because the residual process risk was determined to be low, the following approach was taken.

— Documentation rigor:

— The documentation in this project will have medium rigor, meaning that there will be instances
when deliverables will be combined, and designs will not be translated to detailed design
specifications before implementation.

— Level of scrutiny:

— Review and approval will be deliverable by those responsible for the development and
implementation of the process (the Tubing Supply Company representative] and by an
independent quality person (medical device company representative).

— PLC code and all specifications/designs will be placed under formal configuration management,
such as in a document control system or configuration control system.

— Defining the system:

— Process requirements will be created and will include a system requirements specification
that details the functionality of the equipment, including expected inputs and outputs of the
equipment (e.g. design control elements for the entire functional piece of equipment).

— The team will create an operator’s manual for using the system from the operator’s perspective.
In addition, software requirements will be created and will include logical functional flow,
which will be sufficient to cover the design on the software as well.

Establishing confidence and control over the software

Neither the Tubing Supply Company nor the medical device manufacturer has used this PLC
programming package before. There is no history available for the Tubing Supply Company to help
build confidence in the ability of the software to work as required. However, there will be control over
the programming of the PLC through review of requirements, configuration control and testing of the
system'’s functionality through test protocols.

Defining software boundaries with other systems

The PLC contains the only software in the piece of equipment. This software is not linked to any
other system.

Software risk analysis

The software can fail by releasing a tube down the manufacturing line that has an incorrect shape,
resulting in leakage and possibly in caregiver slippage. The software can also malfunction, resulting in
excessive heat, which can lead to operator burns. The software itself does not introduce any new risks
to the product that have not already been captured in the process risk analysis. Therefore, the group

© IS0 2017 - All rights reserved 31

ISO/TR 80002-2:2017(E)

determines that the current downstream processes should remain and are sufficient to mitigate the
risks associated with software failure.

Finishing the validation plan

Now that the team members know more about the software and its use, they should complete the
validation plan as follows.

— Implementation tools:

— A series of programmable parameters within the equipment include time, temperature and
pressure. The desired settings and ranges for these parameters within the equipment are all
captured in the software requirements. Therefore, the software requirements specification is
sufficient for design purposes without additional design activities or documentation.

— The team will establish a traceability matrix between the software requirements and their
associated tests and will conduct a traceability analysis to ensure that the traceability is
complete.

— Testing tools:

— Software system testing will be based on the software requirements and procedures in the
operator’s manual.

— Regression testing will be performed if needed.

— Deployment tools:
— The system operators and engineers will review the work instructions for clarity and usability.
— Use of the equipment will require operator certification.

— After completion of the validation plan and execution of its activities, the team is comfortable
that this system will consistently provide the desired and defined outputs.

Maintenance considerations

When changes are considered to any part of this process, or if there is a change to the intended use of
the software, an analysis should be carried out to determine any current mitigations will be affected or
if any new risks will be associated with the change. This analysis includes review of the software risks
associated with the tube-forming equipment.

Toolbox usage
The following tools were used from the toolbox.
— Develop-define phase:
— process requirements definition;
— process failure risk analysis;
— intended use;
— validation planning;
— software requirements definition;
— identification of risk control measures within the manufacturing process.
— Develop-implement phase:

— analysis of software failure;

32 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

— traceability analysis.
— Develop-test phase:
— software system test;
— regression test.
— Develop-deploy phase:
— user procedure review;

— operator certification.

© IS0 2017 - All rights reserved 33

ISO/TR 80002-2:2017(E)

Example 2: Automated welding system

Dave is part of a team validating all the systems on a new manufacturing line. His job is to validate the
case cover welder. For this project effort, he is the project manager.

Description of process

Dave's team spends a lot of time discussing who is developing and validating which parts of the new
manufacturing line. When Dave gets the parts, they are already marked, and all of the materials are
inspected and certified. The parts are tested on validated systems upstream.

To set up the welder, four steps are required:

— turning on the machine;

— confirming the presence of the bar code in the part to run;

— pulling the program for the part from the manufacturing execution system;
— confirming the proper program version against the device master record.
The case cover weld process itself has 10 steps:

a) opening the door;

b) loading the parts;

c) shutting the door;

d) starting the program;

e) placing vision system indexes at the start point;

f) turning on the laser;

g) ensuring that the motion control moves the part welds;

h) turning off the laser;

i) opening the door;

j) removing the part.

After this process is completed, the parts move to systems that are not Dave's responsibility. He knows
that downstream activities include a destructive test of weld penetration, a height check on the size of
the can and a leak check for hermetic seal.

Define intended use

To define the intended use for his software, Dave gathers information. He knows that accuracy of vision,
motion, power and speed are all important to the process to protect the safety of the operator and to
achieve consistent weld penetration.

Dave first defines his intended use by stating the purpose and intent of the software as follows.

— The software is intended to weld the case cover, protecting the machine operator from direct access
to an operating laser. This includes steps e) to h) in the description of the process above.

Risk analysis

Dave would like to remove human error from the process. He knows that control of the laser,
servomechanisms and vision are the key components of this process. The software begins by checking
whether the door is closed. For safety reasons, the software will not start the process if it does not
sense that the door is closed. The software ends by confirming that the laser is off and then by allowing

34 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

the door to open. An emergency stop or an unexpected opening of the door cuts power to the laser. Dave
uses information from the process and design risk management activities that occurred as part of the
design of the process of which the weld is a part. He refers to the FMEA and focuses on three areas:
critical part parameters, the hermetic seal and user interfaces. Dave identified multiple hazards related
to this process. First, an operator could be burned if exposed to the laser. Related to the product, the
process could improperly weld, resulting in a bad product that could leak and hurt the end user. Dave
determines the risk of this process is high.

Validation planning

For this project, Dave looks at the define tools in the toolbox and determines that he needs to create
a software requirements definition and maintenance document. His software requirements should
include configuration parameters for tooling and laser time and power adjustments. He also needs to
define the software to hardware interfaces. Specifically, Dave includes accuracy requirements for the
vision system, laser time and power ranges, motion control accuracy requirements and door sensor
safeguards, including interface to hardware door lock if the laser is activated.

Dave also determines that he needs to hold a formal software requirements review, which will include
the automation engineer, the manufacturing engineer and the quality engineer.

The software for this system will be a purchased package, but Dave knows his company will need
to make custom modifications. He needs to add an interface to the factory manufacturing execution

system (MES).
Risk control measures

Dave next focuses on the risks. He sees the severity of the weld depth and other critical parameters
as low because he is confident that the downstream leak check and the periodic destructive test to
check weld penetration are sufficient. Similarly, the leak check will confirm that the hermetic seal is
acceptable. This leaves the risk in the area of user interfaces and, specifically, the risk that the software
could start the laser while the door is open. Dave is aware that there are software checks for the door
seal, but because the severity of risk is high if the software fails to operate as intended, he adds a
redundant hardware interlock to prevent laser activation with the door open.

Validation tasks

Next Dave turns to the validation tasks. The tool vendor that he selected has provided extensive
programming tools. Therefore, the software requirements specification and review created earlier are
sufficient for design without using additional design, development and configuration tools from the
toolbox.

Another task that Dave has selected from the test section of the toolbox is test planning. The test
plans are to include details of the software environments and the expected test results. The test plans
need to be reviewed and approved by the automation engineer, the manufacturing engineer and the
quality engineer, as well as by Dave. The test report will include the actual test results and compare
them with the expected results, provide a pass/fail indication, include test identification and provide
documentation of problem resolution and regression testing for any failures. For this report, Dave
wants additional approval from the automation engineer, the manufacturing engineer, the quality
engineer and the project sponsor.

Deployment

For the deployment of the welder, Dave reviews the deploy tools in the toolbox and decides that a
manufacturing operator procedure is needed and that it needs to be reviewed by the automation
engineer, the manufacturing engineer and the quality engineer. To ensure that the operator understands
how to operate the welder, Dave creates an operator training and certification procedure that includes a
test. He knows that the MES will not allow the operator to pull the weld program off the system without
certification, so he is comfortable that the risk of injury to the operator has been successfully mitigated.

© IS0 2017 - All rights reserved 35

ISO/TR 80002-2:2017(E)

Maintenance

Dave knows that his firm has a configuration-checking tool. Therefore, no specific planning for
maintenance is performed during this validation.

36 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Example 3: Automated welding process control system

Table C.1 to Table C.14 in this example demonstrates the process steps illustrated in Figure 2.

Table C.1 — Example 3 — Process requirements

Devel-
op

Define

i . Validation
Iterative risk .
Process planning and Software system
analyses :
reporting

Process requirements (see 5.3.2.2)

Device Corporation is a class C (see GHTF/SG1/N77:2012) medical device manufacturer.
Device Corporation has chosen to implement an automated welding process control system.
To ensure that the device case is welded appropriately, Device Corporation will use a method
that segregates products using a parametric release decision process. Device Corporation
also has chosen to use the information from this process to support its device history record.

Device Corporation has assigned a new project manager to validate the automated welding
process control system. The project manager recognizes that this system needs to comply
with the requirements of [ISO 13485 for software validation. Therefore, the project manager
recognizes that the proposed welding process control system requires validation.

To better understand the requirements and risks involved in validating the welding system,
the project manager defines the process as follows.

a) The operator enters the lot number into the system for the first part of the lot.
b) The operator inserts subcomponents into the machine fixturing.

c) The operator presses the cycle start button. Fixturing is moved into mated position
mechanically through hydraulics.

d) The welding cycle starts in conjunction with a fixed speed rotation of the fixtured
subcomponents.

e) Aninfrared thermometer monitors the material temperature during the welding process.
The temperatures are recorded in a file, along with the lot number and the part
sequence number for each part welded.

f) The machine opens the fixturing at the end of the cycle.

g) The operator removes the welded part and places the part in a corresponding position in
the lot tray according to the sequenced number.

h) The operator repeats steps b) to g) until the lot tray is filled.
i) The operator hits an end-of-lot button.

j) The machine operator interface displays the part sequence numbers whose weld
temperature is outside the process limits.

k) The operator discards the corresponding part numbers from the lot tray.

I) The operator prints the rejected parts list and sends the lot tray and report to the next
station.

m) The operator starts a new lot by repeating step a).

The project manager also realizes that the key automation functions are as follows:
— storing the lot number;

— storing the weld temperatures per sequenced part number;

— displaying the part sequence numbers that have exceeded the limits of the process
temperature during welding;

— printing the lot reject report.

© IS0 2017 - All rights reserved 37

ISO/TR 80002-2:2017(E)

Table C.2 — Example 3 — Analysis of process failure risk

De-
vel-

op

fine

i i Validation
Iterative risk :
Process planning and Software system
analyses s
reporting

Analysis of process failure risk (see 5.3.2.3)

The project manager then thinks about what could go wrong in the current process. The
project manager realizes that if the process breaks down, release of improperly welded parts
could expose patients to non-sterile devices. Accidental release of bad product could occur
because of a welding process control system error or because of operator error.

The project manager then considers what risk control measures are in place to mitigate the risk.
The project manager learns that the Process Group has a procedure in place that verifies that the
welding operator correctly rejected the parts at the next process step. Furthermore, the project
manager learns that the welding system is a commercial OTS system.

Table C.3 — Example 3 — Software purpose and intent

De-
vel-

op

fine

Validation
planning and
reporting

Iterative risk

Process
analyses

Software system

Software purpose and intent (see 5.3,.2.5.2)

With a basic understanding of the process, the project manager is ready to write the purpose and
intent for the welding process control system.

— The welding process control application makes closed-loop quality decisions as to the pass-or-
fail status of welded cases. On the basis of these decisions, the welding operator manually rejects
the non-conforming product.

The project manager reviews the purpose and intent to appropriately capture the boundaries of
the software within the process and decides to revise the statement as follows.

— The welding process control application makes closed-loop quality assurance decisions as to
the pass-or-fail status of welded cases. On the basis of these decisions, the welding operator then
manually rejects the parametrically non-conforming cases. The welding station is the only control
point in the entire device process that ensures device seal integrity.

The project manager then considers what other systems, if any, will need to interface with the
welding system. He determines that the software is a single application running on a PC
connected to an infrared temperature device, an operator interface, a printer and a machine PLC
input/output. The welding system is not connected to the network.

Table C.4 — Example 3 — Validation planning

De-
vel-

op

De-
fine

Validation
planning and
reporting

Iterative risk

Process
analyses

Software system

Validation planning (see 5.3.2.4)

Now that the project manager understands the process and has determined the intended use of
the new system, the project manager is ready to develop the validation plan at a high level.

Earlier, the project manager determined that there is a high residual risk in the welding process
because itis to be implemented as a non-verifiable process. Thus, the project manager determines
that an extensive review of the validation effort is needed. The project manager decides that the
key approval roles should be made by the Process Engineering and Quality Engineering
Departments and by the operations process trainer. Moreover, the final product acceptance
manager should approve the requirements.

The project manager decides to start authoring the validation plan because the quality system
requires that the validation plan be approved for high-risk systems before any other validation
deliverables or project deliverables can be approved.

38

© ISO 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Table C.5 — Example 3 — Software use requirements and software requirements

vel-
op

De-
fine

: . Validation
Iterative risk :
Process planning and Software system
analyses .
reporting

Software use requirements and software requirements (see 5.3.2.5)

The project manager believes that it is necessary to provide a high level of detail or formality

in this validation effort and knows that it is important to define detailed process and software
requirements. The project manager now writes the software requirements. The project manager
decides that the software should include redundancy in the temperature verification and reject
decision process. The project manager also requires the system to be able to reprint the reject
report any time before the occurrence of line clearance activities.

Because this system supports parametric values, the project manager also includes security
requirements, along with a detailed listing of what data values can be changed by system

access level,

Table C.6 — Example 3 — Analysis of software failure risks

vel-
op

ple-
ment,
test
and
de-

ploy

Validation
planning and Software system
reporting

Iterative risk

Process
analyses

Analysis of software failure risks (see 5.3.3.2)

The project manager now needs to decide what approach should be used to establish full confidence in the
welding system.

The project manager notes that the welder design calls for a commercial off-the-shelf (COTS) system that
is commonly used in industry. The project manager discovers that past problems or issues with this
product have been quickly identified and publicized by the manufacturer.

Although the project manager has already determined that welding process is of high risk, the project
manager still wants to formally analyse the risk of a software failure. To confirm this intuition, the project
manager reviews questions from the company’s risk model.

a) Isthere a potential risk to product safety if the software malfunctions? Yes

1) How? System accepts a bad part on the basis of default temperature limits. Limits reset to default
setting after a power failure.

2) What should be done to control this risk? Require operator to verify the limits at the beginning
and end of each lot run.

b) Isthere a potential risk to product quality (other than a safety risk) if the user makes a mistake? Yes
1) How? In manual mode, the welding laser can fire if both part sensors are triggered for 3 s.

2) What should be done to control this risk? Change the default configuration to fire only in auto mode.

© IS0 2017 - All rights reserved 39

ISO/TR 80002-2:2017(E)

Table C.7 — Example 3 — Validation planning

. . Validation
Iterative risk .
Process planning and Software system
analyses ;
reporting

Validation planning (see 5.3.3.3)

Im- |With anunderstanding of the software requirements, the project manager has enough information to
ple- |finishthe validation. The project manager has decided on the implementation approach and has analysed
De- |ment, the software risk. At this point, the project manager steps back and asks this question, in light of
vel- |test |everythinglearned about this system: “What validation activities would really allow me to gain
op and |confidence that the welding system is fit for its intended use.”
df' The project manager thinks about how the system is being developed by a third party and is concerned
PIOY | that the developer correctly translate the requirements for the report customization. Because the system
will depend on various data fields, the project manager adds a verification step activity in the code review
to confirm the correctness of the developer’s work,
Table C.8 — Example 3 — Software implementation
: : Validation
p Iterative risk :
rocess analvses planning and Software system
y reporting
Software implementation (design, development, building and test) (see 5.3.3.4)
Im- | The decision to purchase rather than internally develop the software was made on the basis of the
ple- availability of a commercial off-the-shelf (COTS) system. However, the project manager still needs to prove
De- |ment,|tO
vel- | test |Device Corporation’s Quality Department that the welding controls software was developed under a valid
op | and software development life cycle (SDLC) because the intended use risk is classified as high.
de- | After discussing this issue with the COTS supplier, the project manager learns that the suppliers’ SDLC
PIOY | processes were audited recently by an independent auditing firm. The project manager then contacts the
independent auditing firm and purchases a copy of the COTS supplier’s SDLC audit report. The net result is
that the Quality Department is convinced that the COTS supplier developed the software under an effective
life-cycle model.
Table C.9 — Example 3 — Validation report
Im- o Validation
Iterative risk .
ple- Process | planning and Software system
De- |ment, analyses reporting
vel- | test —
op | and Validation report (see 5.3.3.5)
1‘“—" The project manager completes and gains approval of the validation report.
ploy
Table C.10 — Example 3 — Software release
Validation
Im- Process Iteratilve risk planning and Software system
ple- analyses reporting
De- |ment/
velop | Test/ | Software release (see 5.3.3.6)
::3;, The project manager verifies that the software placed under the formal configuration management system matches
the software cited in the validation report.
40 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Table C.11 — Example 3 — Analysis of change

] . : Validation
terative risk .
Process planning and Software system
analyses reporting
Main-
tain Analysis of change (see 5.4)
The project manager verifies that, under the validation plan, the company has a formal change control
process that governs any post-validation changes to the welding system.
Table C.12 — Example 3 — Maintenance validation planning
: . Validation
Iterative risk .
Process analyses planning and Software system
reporting
Maintenance validation planning (see 5.4.2)
The project manager thinks ahead to what activities will be appropriate to ensure confidence that the
system continues to fulfil its intended use. Given the high risk of the system, the project manager decides
Main- that there should be a quarterly calibration and certification that the actual temperature measurement
tain versus the temperature value printed in the lot reportis accurate and precise. The project manager
includes a section in the validation plan to document this conclusion and issues a request to have a
calibration and certification procedure developed and implemented to ensure that this quarterly review is
conducted once the system goes into production.
Table C.13 — Example 3 — Software maintenance
p Iterative risk Falu:!atmn
rocess planning and Software system
analyses ;
Main- reporting
tain Software maintenance (see 5.4.6)
The project manager verifies that, under the validation plan, the company has a periodic review process
that ensures that the welding system and process does not vary from its intended use.
Table C.14 — Example 3 — Retirement of software
: : Validation
Iterative risk :
Process planning and Software system
analyses :
Re- reporting
tire Retirement of software (see 5.5)
The project manager verifies that under the validation plan, the company has a formal software
retirement process that governs retirement of the welding system.

Toolbox selections

Design, development and configuration tools

— Process requirements definition

— Formal software requirements review

— Identification of risk control measures within the manufacturing and business process

— Process development review

— Traceability matrix (inherent in the requirements specification)

© IS0 2017 - All rights reserved 41

ISO/TR 80002-2:2017(E)

Test tools

— Test planning

Software system test

Software configuration control

Deploy tools

42

User procedure review
Internal training for the application
Installation qualification

Process validation

© ISO 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Example 4: C/C++ language compiler

Background

A class C medical device company needs to validate its off-the-shelf software C/C++ language compiler
for an embedded system. It has been determined that the compiler is regulated because it produces
medical device product software (the software source code and executable software) that is placed in
the medical device design records.

Description of the quality system processes

Two quality system processes are pertinent to this case study. The first is the overall quality system
process of the implementation of class C medical device software (see Figure C.1). The second is the
process to develop the executable software units that implement the software design and meet all the
software requirements. These software units include the OTSS C/C++ language compiler (see “Software
implementation” in Figure C.1).

’(Upstream processes

Peer-reviewed system requirements, hazard analysis, software requirements and software design

'
—‘ Software implementation }-—— OTSS C/C++
| language compiler
Changes to baselined artifacts Peer-reviewed software units
through the CM and defect tracking l
processes
B Software unit testing

Unit tested software units

1 Hardware
= Software unit integration testing development
| processes

White box tested software application

;

Software requirements verification
! |
Functionally tested software application Functionally tested hardware

. {

System integration testing
|

White box tested class 111 medical device

{
System verification and validation

.

Validated and verified class I1l medical device

[|

[|

Figure C.1 — Implementation of class C medical device software

Upstream processes

Upstream of the process to implement the software are the processes to develop the system-level
documentation (e.g. requirements, design, hazard analysis) that characterizes the medical device to
be developed. The portion of the system implemented in the software is then characterized through
processes to develop the software requirements, software design and other software documents or
plans. In parallel with software development, additional processes are performed to develop the
medical device hardware.

© IS0 2017 - All rights reserved 43

ISO/TR 80002-2:2017(E)

Software implementation process

The formal software language used is the C/C++ software language. An OTSS C/C++ language compiler
is used to compile high-level software statements into executable machine code. The output of the
software implementation process is the baselined software units, which are peer reviewed by other
technical members for completeness and correctness. For a software unit peer review, the software
unit should be compiled error-free at the highest compiler level and any compiler warnings should be
explained at the peer review.

Downstream testing processes
The software units are tested or verified in several testing processes as follows.

— Software unit testing. The individual software units are tested for logical correctness and for
boundary conditions for each unit. This testing might occur on a development system or target
system (medical device hardware). Simple software units could forgo this testing when it is
determined that a code peer review is adequate for detecting unit logical errors.

— Software unit integration testing. The software units are integrated and tested to ensure that the
software design is correctly implemented and that boundary conditions with respect to the design
are tested. This testing occurs on the target system.

— Software requirements verification. The complete software application is verified against the
complete set of software requirements. This verification is performed on the target system.

— System integration testing. The software and hardware in the medical device are tested to ensure
that the system design is correctly implemented and that boundary conditions with respect to the
system design are tested.

— System verification and validation. The medical device is verified at the system requirements level
and, in addition, is validated for its intended use.

Analysis of process failure risk

The project followed the company’s process risk assessment procedure. The overall quality system
process of the implementation of class C medical device software (which includes all of the processes
described in Figure C.1) is inherently high risk as it generates software that functions within a class C
medical device.

The OTSS C/C++ language compiler, as a part of the software implementation process, is assessed to be
low risk on the basis of two factors:

— the compiler does not directly cause serious injury or death to a patient, operator or bystander;

— downstream verification is performed on the output (software source code and executable software)
of the tool (e.g. software unit testing, software unit integration testing, software requirements
verification, system integration testing, system verification and validation).

Intended use definition

The purpose and intent of the OTSS C/C++ language compiler within the software implementation
process described above is to author the embedded system source code and to perform the compilation
process to generate executable software for a class C medical device.

Software use requirements

a) The tool should cross-compile C and C++ code to work on the reduced instruction set computer
(RISC) processor using the selected vendor operating system.

b) The compiler should have a source code debugger.

c) The compiler should be American National Standards Institute (ANSI) C and C++ compliant.

14 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

d) The compiler should integrate with the various approved industry standard integrated development
environments.

e) The vendor should publish a known bug list that is searchable. The list should be used as a reference
to consult as needed.

f) The vendor is required to have a large user base within a regulated industry:.

Analysis of software failure risk

A risk analysis of the OTSS C/C++ language compiler reveals that if there is an error, the following
events could occur.

— Risk 1. The vendor fails to supply the appropriate business processes, development methods and
support capabilities.

— Mitigation 1. See “Vendor selection process” section below.
— Risk 2. The compiler produces incorrect executable statements.
— Mitigation 2. See “Validation plan” section below.

— Risk 3. The user, who is not exercising the most rigorous level of error checking, uses the compiler
incorrectly.

— Mitigation 3. Improve training, procedures and work instructions.
Vendor selection process

The project has followed the company’s quality system procedure for selecting and approving vendors,
and this information is captured in the project’s design records. This procedure included an on-site
assessment reviewing the vendor’s SDLC policies, procedures, tasks and activities. The capabilities
of the OTSS C/C++ language compiler offered by the vendor were verified to satisfy the software use
requirements defined above.

Validation plan

A downstream validation approach was selected for the OTSS C/C++ language compiler. The vendor
selection process has determined that the vendor met all of the documented software use requirements.
The compiler has had significant run time at the vendor and will have significant run time during the
debug and testing performed on the project. The output of the compiler is subject to the following
dynamic testing in downstream processes:

— software unit testing;
— software unit integration testing;
— software requirements verification testing;
— system integration testing;
— system verification and validation.
Validation report
Contents of the validation report are as follows:
— OTSS description
— Software use requirements

— Hardware requirements

— Software requirements

© IS0 2017 - All rights reserved 45

ISO/TR 80002-2:2017(E)

— Patches

Risk assessment and hazard analysis
Vendor selection

Installation activities

Validation

— Software use requirements test cases and results

Known bug list
Configuration control
— Training

— Install location
— Maintenance

— Retirement process

Toolbox selection

46

Define phase:
— intended use;

— validation planning;

— risk management planning (risk assessment).

Implement phase:

— risk control measures;

— vendor audit.

Deployment phase:

— installation qualification;

— internal training for the application;
— final acceptance tests.

Maintain phase:

— maintenance planning;

— known issues analysis.

© ISO 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Example 5: Automated software test system
Background

In this example, the manufacturer is a class C medical device manufacturer. The medical devices
produced by this manufacturer are controlled by software. The software is architecturally broken
up into two major components: the operator console and the real-time embedded control software.
The operator console is the primary human interface to the system. The real-time embedded control
software is the software that performs the electromechanical control, data acquisition, timing and the
like. The operator console software (residing in a PC running an industry standard operating system
and database) and the real-time embedded software (residing in an on-board embedded CPU card) are
interfaced using a standard Transmission Control Protocol/Internet Protocol (TCP/IP) hardware and
protocol interface.

The software manager on the project has decided that it would be valuable to improve the software
development and testing process by introducing automated testing of the software. The software
manager has decided to initially implement automated software testing of only the operator console
software. The automated software testing will take place at both the integration test point and the
software system test point.

Determining that the software is regulated

Because the automated test software will be used to perform testing that is required by the
manufacturer’s software development procedures, and because it will provide evidence of required
regression testing at the integration and system test points, the automated testing software was
determined to automate part of the development process and therefore was determined to be subject to
the validation requirement of ISO 13485.

Defining the process

To better understand the requirements and risks involved in introducing automated software testing
of the operator console, the software manager defines the use of the automated test software during
the software development process as follows.

During the development of the device software, various modules are scheduled to be integrated into the
system software at various times. In addition, modules that have already been integrated into the system
will undergo changes because of defect corrections and modifications to requirements. The automated
test system is planned to be used for regression testing of the integrated system software and for final
testing of a specific module in the system. The software project plan calls for the integration or updates
of modules to occur two to three times per week. The automated tests will be run at each of those
integration points to ensure that the new functionality works correctly and that previously working
functionality has not been adversely affected by the new code that has been added or by changes in the
code in a particular build. The automated tests will be run at the software system test level for builds
that are candidates for final release to validation and ultimately to customers. The automated testing
will also be used in the event that defects are discovered in the final phases of development that need to
be corrected to provide a level of regression testing that supplements planned manual testing.

Analysing the risk

The software manager now goes through an analysis process to determine any potential impacts if the
use of the automated test software does not go correctly.

The first thing that the software manager needs to evaluate is whether a failure of the automated testing
process, a failure of the automated test software or a mistake made by anyone using the automated test
software could ultimately lead to a flaw in the medical device that could potentially harm the patient,
the operator, a bystander, a service person or the environment.

— The software manager’s biggest concern is that the automated software test system will give a false

indication that the operator console software under test is working correctly when it actually still
has defects.

© IS0 2017 - All rights reserved 47

ISO/TR 80002-2:2017(E)

— Ifthe undetected defects are in a critical area of the software, they could cause a malfunction in the
medical device that could create a harm scenario.

— The software manager realizes that such a risk could arise from incorrect management, from use of
the automated test software or from a flaw in the automated test software itself.

— The software manager decides that it is extremely important to put boundary conditions around
when the automated software test system can be used and what it can be used for to ensure that the
software development and test team are not over reliant on the system.

— Individuals who will be involved in configuring, programming and operating the automated test
software will need to be trained in their roles.

— The software manager feels that if such factors are controlled, the potential associated risks will be
mitigated to an acceptable level.

Defining the software intended use

Having analysed the potential use of the automated test software and the associated risks, the software
manager is ready to develop the statement of purpose and intent for the automated software test
system. The statement reads as follows.

— The automated test system will be used to test builds of the software at the integration test points
during the development process.

— The automated test system will be used to test validation and candidate release builds at the
software system test point.

— The automated test system will perform regression testing of the system to ensure that workflows
have not been adversely affected by newly introduced software or changed software.

— The general role of the automated test system will be to provide supplementary regression testing
to manual testing that will take place.

— For low-complexity, predictable workflows, the automated test system can be used as the final
determinant of the correctness of the software, given that the specific protocol has been verified as
consistent with equivalent manual testing.

— The automated test system will exercise software that provides safeguards (risk mitigation) for the
software system or the medical device as a whole.

Validation planning

The software manager now has a clear understanding of the process that is to be automated, of the
specific intended use of the automated test system and of the potential risks involved. The software
manager has already determined that certain controls will need to be in place regarding the use of the
software and that the automated software testing system, if used in the way that the software manager
has prescribed with the appropriate controls, will have an acceptable level of risk associated with its use.

— In this case, the software manager has determined that, when the automated software test system
is appropriately used, little or no risk exists that it will contribute to a medical device flaw. The
software manager has defined appropriately used as meaning that the software development and
test team will not overly rely on the use of the system to determine the correctness of the software.
Given the determination of low risk, the software manager has determined that the validation
requirements for the system will be on the low end of effort and rigor regarding testing of the
software test system.

Validation documentation: Validation report approach

The approach that the software manager has selected is to develop a software validation report for the
automated software test system that will include a summary of all of the activities related to gaining
the necessary level of confidence in the system.

48 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Critical thinking

The software manager now determines how best to reach the necessary level of confidence, that the
system will be used appropriately and that it will not contribute to a serious flaw in the medical device.

He determines that among the most important factors in reaching the necessary level of confidence in
the system are the following.

Strict adherence to appropriate intended use

Ensure that all personnel involved in software development and testing clearly understand the
boundary conditions and the appropriate intended use of the system.

Documentation: Include a section in the validation report that describes the specific intended
use and the ways that this information will be communicated through the project’s software
development plan.

Due diligence

Purchase an industry standard automated software test system from a reputable vendor whose
test system is being used for the same level of criticality or more critical applications.

Review the intended use of the system with the vendor to determine that the intended use is
appropriate.

Obtain information about how the vendor validated the software before release to the
commercial market. Obtain a statement from the vendor’s Quality Department confirming that
the commercialized software has been validated by the vendor. This statement will give the
confidence that the automated software test system has been adequately tested by the vendor
and will establish an initial foundation for the additional activities that the software manager
and the software development and test team will perform.

Establish a relationship with the vendor to ensure that the software manager and the software
development and test team are aware of known issues and defects with the version of test
software they will be using.

Gain an understanding of the vendor’s future plans for software updates to ensure that
migration plans to new versions of the software and revalidation activities can be anticipated.

Documentation: Include a section in the validation report describing the results of the vendor’s
due diligence activities, including information on the vendor’s validation of the automated
software test system, on the method of access to the vendor’s defect (bug) list and on the
anticipated migration plan to new versions of the software.

[nstallation testing

Confirm that the computing environment in which the software will be residing meets the
vendor’s specifications.

Establish an initial high-level test protocol with the purpose of ensuring that the software has
been installed correctly.

Documentation: Include a section in the validation report describing the results of the
installation confirmation activities.

Risk management

Ensure that the system will be used only as defined by the software manager in the software
purpose and intent.

Include specific allowable boundary conditions in the software development plan for the project
in which the automated test system will be used.

© IS0 2017 - All rights reserved 49

ISO/TR 80002-2:2017(E)

50

— Conduct an analysis to identify the exact coverage areas tested by the system to ensure that
manual testing addresses the areas that the automated software test system does not cover.

— Documentation: Include a section in the validation report describing the risks that were
identified in the initial risk analysis and indicate how each of these risks will be mitigated.

Software use requirements

— Develop a list of the automated test system functionality that they intend to use. The list, which
is developed by the software manager and the software development and test team, is called
the “software use requirements” and represents the functionality that will be used.

— Documentation: Include the “software use requirements” list in a section of the validation
report and describe each of the software use requirements.

Validation of the automated test system

— Use the “software use requirements” list to determine the necessary level of confidence. The
level of confidence can be established by taking three of the initial automated test scripts or
protocols and running a side-by-side test against the same protocols run manually. The three
initial test scripts or protocols exercise all of the functionality that the team will be using.

— Documentation: Include a section in the validation report summarizing the results of the side-
by-side testing and include evidence of the testing to show that the results were equivalent.

Training

— Establish a training program for all system users to ensure that they fully understand how to
use the system and are qualified to use it. The software manager believes that training is one
of the most important elements needed to ensure the safe and effective use of the automated
software test system.

— Documentation: Include a section in the validation report describing the required training
necessary for system users.

Validation of individual automated test protocols

— Where the automated test system will be used to test software that is designed to mitigate
system, hardware or software risks and hazards, ensure that each protocol has been verified
by using side-by-side testing of the automated tests and manual tests.

— Where the automated test system will be used for final testing of low-complexity, predictable
workflows, ensure that each protocol has been verified using side-by-side testing of the
automated tests and manual tests.

— Documentation: Ensure that the software validation records for the medical device include
evidence of the side-by-side testing of test scripts or protocols that fit the category.

Configuration management

— Ensure that only the appropriate, validated version of the automated test software is installed
and being used.

— As new versions of the automated test software become available from the vendor, control the
implementation of such new versions or changes to ensure that the versions or changes are
introduced at appropriate times.

— Ensure that revalidation of the automated test system is considered at each update point and
that each revalidation of the system is conducted and documented.

— Documentation: Include a section in the validation report describing the configuration
management plan for the system.

© ISO 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Validation report

As a result of the confidence-building activities, the software manager submits the validation report
for final review and approval. The report conveys the thought processes that went into determining
the value-added activities to be conducted so that the software manager could conclude that use of
the automated software test system result in a scenario in which the associated medical device under
development would inadvertently be flawed. The report also contains evidence that all of the activities
determined to be important were conducted as planned.

The following are the contents of the validation report:
— process definition;

— risk analysis;

— risk management;

— intended use;

— vendor due diligence;

— training;

— installation testing;

— intended use validation of the automated test system;
— maintenance, revalidation and configuration management.
Validation report review and approval

The software manager routes the validation report to the project manager, the project software quality
assurance manager and the software test manager for review and approval.

All reviewers feel that the software manager has clearly thought through the intended use of the
system and understands all of the associated risks involved in the system’s use. The reviewers feel
that all activities that are necessary to reach the level of confidence in the system required to allow
the system’s use have been performed. The reviewers approve the plan. The system is deemed to be
validated and is put into use.

© IS0 2017 - All rights reserved 51

ISO/TR 80002-2:2017(E)

Example 6: A simple spreadsheet
Background

The laboratory analysts at Company ZYX are tired of pulling different specification sheets from their
document control system for every product they analyse and then manually calculating the angle
number they need to compare against the specification. An instrument in the laboratory is used for
receiving inspection. The instrument measures three coordinate locations, which the analysts use to
calculate an angle that is compared with the specification. The laboratory has encountered three recent
instances in which an analyst has incorrectly calculated the angle (because of “fat fingers,” the analyst
says) and the analysts wanted to prevent this error from recurring. They decide to create a spreadsheet
to perform the angle calculation and to combine the specifications for all 50 products they analyse onto
this spreadsheet. They would enter the three coordinate pairs that their instrument measures, select
the product name from a pull-down menu and obtain a pass/fail result. The analysts also consider an
interface for the instrument to pass the coordinates directly to the spreadsheet, but because of the cost
of the interface, this enhancement is delayed until next year.

Definition of the process

The current process contains the following steps.

a) Have the instrument measure the part.

b) Write down the three coordinate pairs.

c) Calculate the angle.

d) Pull the specification for the part from the document control system.

e) Compare the angle value to the specification and determine pass or fail.

f) Puta pass sheet or a fail sheet on the parts and send them into product parts inventory.
The new process will contain the following steps.

a) Acquire the spreadsheet from the document control system.

b) Have the instrument measure the part.

c) Enter the three coordinate pairs into the spreadsheet.

d) Visually check the coordinate pairs entered against the instrument values.
e) Selectthe part number in the spreadsheet.

f) Select “Calculate result” in the spreadsheet.

g) Visually check that the correct part number was selected.

h) Depending on the result, put a pass sheet or a fail sheet on the parts and send them into product
parts inventory.

Definition of the intended use

The analysts define the purpose and intent of the spreadsheet as follows: the spreadsheet will take three
entered coordinate pairs, calculate an angle, and then compare this angle to the product specification
for the selected product, reporting a pass/fail result.

Risk analysis

The analysts brainstorm the possible hazards related to the spreadsheet. They determine that an
incorrect result could mean that parts that did not meet specification could be used in production. For
such defective parts to make it to the end user of the medical device, at least two other downstream

52 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

failures would have to occur, but a slight, if unlikely, risk of harm to the end user remains. Therefore,
there is a low risk of producing a product that fails to meet specifications. However, there is a larger
risk of increased manufacturing costs, because if the incorrect parts are used in production, they would
not be caught until the first subassembly inspection. As a result, the subassembly would have to be
scrapped. Moreover, good parts might be thrown away if an incorrect result of fail was received, again
increasing the cost of scrap. Therefore, rigor in the form of spreadsheet design, procedural controls,
document reviews and testing will be added to address the business concerns.

Validation planning

Because of the low risk of producing out-of-specification product, the level of effort for this validation
effort will be low. The analysts decide to combine the spreadsheet requirements and the validation plan
into the same document. The analysts also decide to combine the design documentation with high-level
test planning. For such documents, the analysts plan reviews by the entire analyst team (four people) as
well as by a quality assurance representative. In addition, the analysts plan to consult technical experts
to develop a representative set of test data to build confidence that the calculation is functioning as
intended. The technical experts will also approve the document.

Risk control measures

The analysts look at each item in the spreadsheet that could introduce error and cause an incorrect
result. For each item, the analysts identify how they would mitigate the risk (see Table C.15).

Table C.15 — Example 6 — Risks and mitigations

Risk Mitigation

Incorrect values could be entered. Confirm each value pair entered against the instrument through a
procedural control. Step d) was added to the new process to do this.

The calculation could be incorrect. Confirm that the formula is correct and that it provides accurate
results as intended.

The wrong product could be selected. Confirm the part number through a procedural control. Step g)
was added to the new process to do this.

The macro to indicate the result could be Confirm that the macro is correct and that it performs as intended.
incorrect.

The specifications in the spreadsheet could |Confirm the spreadsheet specifications against the 50 product
be incorrect. specification sheets. Augment the process for specification sheet
changes to require an update of the spreadsheet if a specification
changes. (This has never occurred but is possible.)

The calculation formula or macro could be |The validated spreadsheet with configuration controls will be put
changed after validation. into the document control system and retrieved each time it is
needed. The configuration controls will include password
protection and locked cells for all non-data-entry cells.

Validation tasks

The formula used is understood and the developer is experienced in spreadsheet macro development.
The validation will confirm the following items:

— the calculations;
— the macro;
— cell-locking function (locked cells cannot be changed);

— data-entry checking (values in the allowed range, appropriate product selection, informative error
messages).

Because the spreadsheet produces only one result at a time, no stress or performance testing is needed.
One test plan and report will be created for all testing. The report will also release the spreadsheet into
use and will confirm control of this spreadsheet in the company document control system.

© IS0 2017 - All rights reserved 53

ISO/TR 80002-2:2017(E)

Deployment

Before deployment of the new system, the testing is completed and the manufacturing operators are
certified on the operation of the new vision system.

Tools from toolbox

— Requirements definition (documented in the validation plan)

— Process failure and risk analysis (documented in the validation plan)
— Intended use (documented in the validation plan)

— Validation plan

— Test planning

— Operator certification

— Maintenance planning (which calls for regression analysis)
Maintenance

Maintenance will be required on the spreadsheet every time a product specification changes or a new
product is added. A maintenance test plan will be developed with a representative subset of the full
validation test cases to ensure that new items do not break the spreadsheet. The maintenance plan
will call for regression analysis to see if additional test cases need to be added to this subset of test
cases specific to the change being made. This plan will also describe how to update the spreadsheet
(e.g. unlock the cells, change, relock).

54 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Example 7: A (not so) simple spreadsheet
Description of software

A software development team has used a Microsoft Excell) spreadsheet as a development aid. The
spreadsheet will record device message translations used in a class C or D device. The original release
of the device was written in US English. Subsequent releases will support seven languages. The
spreadsheet consists of seven columns. The leftmost column is the English-language device message
for every message in the device. Each of the remaining columns represents one of the international
languages to be supported and each row within a column represents the translation from English to the
international language for the particular English-language message in the leftmost column of that row.

Intended use
The spreadsheet satisfies transient needs to
— visually organize the English-language messages and their translations,

— create a spreadsheet that can be sent to local representatives for the purpose of collecting
translated messages either directly into the spreadsheet or in handwritten form on a hard copy of
the spreadsheet, and

— provide a transient data storage tool for the translated messages.

Once the translations are collected and translated into device software, there is no need to keep or
maintain the spreadsheet.

No computed cells or macros are part of this spreadsheet.
Determine if the software is in scope

Excel is used simply to format the information for circulation and collection of foreign-language
translations of the device messages. At first glance, the spreadsheet appears to be such a simple
application of Excel that one is tempted to decide that it does not need validation.

In 5.2, the following question is asked: “Could the failure or latent flaws of the software adversely affect
the safety of medical devices or quality of medical devices?”

The answer to this question is clearly “yes.” If the software or spreadsheet fails in such a way that it
corrupts the message translations that are stored there, the failure could affect the safety of the device.
Although the team feels that the likelihood of failure for this “simple application” is low, the likelihood is
still within the scope of ISO 13485 validation requirements.

Risk assessment

If device messages are not translated properly, user confusion or misinterpretation of messages could
result. Hence, the potential exists for indirect harm to a patient using the device. Failure of the software
would be detectable and there are numerous opportunities for cross-checks in the device development
and validation process to detect and correct any failures of the software.

Anticipated failure modes that could adversely affect the device software are as follows:

— corruption of original English-language messages to be translated by loss of the entry file, by loss of
individual messages, by misordering of messages, thereby leading to loss of context, or by corruption
of individual messages by random loss, substitution or transposition of characters;

— corruption of individual translated messages as prepared and collected from regional offices.
Corruption might be due to loss of the entry file, to loss of individual messages, to misordering of
messages, thereby leading to loss of context or to corruption of individual messages by random

1) Microsoft Excel is an example of a suitable product available commercially. This information is given for the
convenience of users of this document and does not constitute an endorsement by [SO of this product.

© IS0 2017 - All rights reserved 55

ISO/TR 80002-2:2017(E)

loss, substitution or transposition of characters. Additional potential exists for corruption of any
language requiring non-English fonts if the fonts are not properly installed in Excel;

— corruption of the collected results spreadsheet, which shows the accumulation of results for each
translation. Corruption might be due to loss of the entry file, to loss of individual messages, to
misordering of messages, thereby leading to loss of context or to corruption of individual messages
by random loss, substitution or transposition of characters. In addition to misordering of rows in the
spreadsheet, misordering of columns could also occur. Columns that do not display their translated
messages in the native fonts and character sets will be misinterpreted by the software engineers as
they translate the messages into code.

Validation planning

The software development engineers recognize the potential risk to a patient if the messages for the
new device are wrong. The severity of a failure of the software could be high. Something needs to be
done to build confidence that the messages organized in the spreadsheet are the correct translations.

However, Excel is being used only to organize the information. It seems unlikely that any amount of
testing of Excel will uncover any defects that will corrupt the messages. As the engineers consider this
problem, they complain that human error is far more likely to lead to a mistake than a simple application
of Excel.

In thinking about human error, the engineers realize that no well-defined processes exist to collect the
translations or to verify that no human error has crept into the process.

The engineers create a written procedure for collecting and verifying translated messages. They then
consider what risks might exist for their process to break down, how software (i.e. Excel spreadsheet)
failure could contribute to that breakdown, and finally, what can be done to validate the process,
including the spreadsheet.

Risk control measures

After better defining the translation-gathering process, the engineers identify risk control measures to
protect the process from embedding errors into the message translations.

The risk control measures that protect the process of translation collection will also protect from
failure of the software to meet its intended use.

— When sourced from regional offices, translations should be provided in either paper (hard-copy)
format or in electronic format with an accompanying hard copy. If an electronic version is provided
by the regional office, the data in that spreadsheet will be verified (and documented) against the
hard copy when itis transferred to the master translation spreadsheet. This verification will protect
from any misinterpretation of results caused by corruption of the spreadsheet during transmission
or differences in font capabilities between the computer sourcing the translation and the computer
receiving the translations.

— Once all translations are collected and placed in the master spreadsheet, a hard copy spreadsheet
should be sent to each regional office for review and approval. This regional approval will protect
from any misinterpretation of results caused by corruption of the spreadsheet during transmission
or differences in font capabilities between the computer sourcing the translation and the computer
receiving the translations.

— Once the master spreadsheet is accepted by all regional offices, development approvers and quality
assurance approvers, the hard copy of the master spreadsheet should be the input to the software
development process for the device. Furthermore, the hard copy of the master spreadsheet should
be the source of any expected results from verification testing of translations in the device software.

56 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Validation tasks

In addition to those risk control measures, other verification and validation tasks should be completed
to ensure that the software adequately fulfils its transient intended use. These tasks are as follows.

— For each translation collected from regional offices, a hard copy of the updated master spreadsheet
should be verified line by line against the hard copy of the individual translation spreadsheet’s hard
copy. It is mandatory to verify hard copy against hard copy to rule out any mistranslations caused
by font differences between computer platforms or printers.

— A version control process should be documented in detail. The process should specifically account
for the following:

— changes in the message requirements (i.e. English language) as the functionality of the device
evolves during development;

— changes in the master document as translations are provided and as the updated master
spreadsheet is reviewed and modified by the regional offices.

— Although the spreadsheet is very simple, some very real version control risks are associated with
its use.

— The configuration for the spreadsheet should include the version number of the spreadsheet itself,
the version of Excel used, the computer platform configuration and the printer configuration for the
printer used to create the hard copy of the spreadsheet. The full configuration is important because
font differences can exist in different installations of Windows or Office and in different versions of
printer firmware. The only way to be sure the translations do not change unintentionally is to use
the same configuration when using the spreadsheet.

— The configuration of the spreadsheet (i.e. operating environment and versioning) needs to be
controlled to prevent chaotic, uncoordinated change. A single person is assigned responsibility for
deciding when to make changes to the configuration and when to document the change history.

— The version of each spreadsheet should be visible in its hard-copy version.

— Translation tables in the device software should indicate which version of the hard-copy master
spreadsheet was used as input to the translated message software.

— The individual translation verification task should include the following.

— The English-language message should be verified line by line by comparing the master version
and translation version of the spreadsheet. This comparison protects against any corruption
(e.g. damaged or missing messages) of the spreadsheet file that might have occurred when the
file was transmitted to regional offices and when the file was returned by the regional offices.

— After the translations are inserted into the master spreadsheet (either manually or by using the
cut/paste functionality of Excel), aline-by-line comparison of the hard-copy output of the revised
master spreadsheet should be verified against a hard copy of the translation spreadsheet.

— When the device software is tested for implementation of messages, the test procedures should
use a hard copy of the latest version of the master spreadsheet (and should reference the version
number) for making comparisons of implemented messages to intended messages.

All of these validation tasks should be documented and collected as objective evidence of the validation
of the process and of the Excel spreadsheet.

This validation approach results in 100 % verification of the outputs versus the inputs of the software.
No further testing of the spreadsheet is planned. Despite the lack of traditional testing, the engineers
feel confident in their process and believe that their validation rationale has been a valuable exercise.
The engineers reason that any failure of the software would be detected and they have a recovery path
through the hard copies that are collected and recorded at the appropriate points in the process. The
hard copies and documented line-by-line verifications provide documented evidence of the activity.

© IS0 2017 - All rights reserved 57

ISO/TR 80002-2:2017(E)

Maintenance

The spreadsheet is intended to fulfil a transient need. It is to be retired once the translated messages
have been embedded in code. No maintenance plans are created.

Discussion

The intended use and initial risk analysis of the spreadsheet were critical to the determination that
the spreadsheet required further validation attention. Under other intended use circumstances, the
very same spreadsheet might well have led to a conclusion that the spreadsheet was of low risk and
certainly of low complexity. Had the intended use been simply for tracking the progress of the gathering
of translations (i.e. the translations on the spreadsheet would not have been used in the design to
implementation activities), then the determination might have been that virtually no risk existed to the
device's integrity and that, in fact, the spreadsheet was a business management tool and did not even
fall under the scope of the regulation.

The “process” that this software was “automating” was part of the process of data collection, formatting
and storage of message translations for a device. The example is interesting from several perspectives.

— The validation required little, if any, software testing to validate the use of the software. It is
important to note that the software (Excel) and the spreadsheet were validated for this specific use
but were not validated generically for any use. The team felt that testing was unlikely to uncover
any defects in the software but that there was a vulnerability to the device if the software did fail in
some unpredictable manner.

— The validation consisted of 100 % verification of the outputs of the spreadsheet. The hard-copy
versions were relied on as the “gold standard.” Once the hard copies were approved and used in the
design history file, any subsequent failure of the software was inconsequential. Any failure of the
software before approval would be caught by the review and approval process.

— The “process” was modified to make it immune to any failure of the spreadsheet software.

— The engineers believed the likelihood of human failure to be much higher than the likelihood of
software failure in this application. Users could make typographical errors, could use the wrong
version of the spreadsheet or could make similar errors. In this case, the “software validation” also
made the process more immune to human error.

— The example makes a strong point for the importance of configuration management, even for routine
office productivity tools.

NOTE This example was based on a real case that was not so cleanly handled. In the real situation, human
errors occurred with versioning of the spreadsheets. Unexpectedly, issues related to versions of fonts that were
linked to different installations of Excel on different PCs gave different hard-copy results. (Printer fonts also
became problematic on different printers.) The seemingly simple spreadsheet, one very nearly dismissed as not
needing validation, actually became problematic in its corruption of message translations.

58 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Example 8: Parametric sterilizer

Mary has been tasked with leading the validation effort for a new automated sterilizer system that will
be custom developed for use by her company, Always-Safe Medical Device Company.

Defining the process

Mary begins by first defining and documenting what she knows about the 100 % ethylene oxide (ETO)
sterilization process that is being introduced into her plant.

— Medical devices are manually put into the sterilizer. This process includes sterilization-cycle
parameter evaluation to support parametric release.

— The automated sterilizer system software controls sterilization-cycle activities.

— Medical devices are manually removed after the cycle is complete and are transferred to a degassing
chamber.

Analysing the process risk

Mary is very concerned about the risk posed by this process. Failure of this process could have severe
consequences, including the following:

a) improper sterilization of medical devices. This failure could result in serious injury or death
attributable to infection from the use of a nonsterile product;

b) loss of device history information and product traceability;

c) release of toxic chemicals into the manufacturing facility or the environment. This failure could
resultin the serious injury or death of sterilizer operators or individuals in the local neighbourhood.

Mary therefore considers what risk control measures should be put in place and verified to mitigate
these risks. Mary believes risk can be controlled through the use of parametric sterilization techniques
to ensure that the right amount of gas is used for the proper time period at the correct temperature
and correct relative humidity. Furthermore, manually checking data from the sterilizer for proper
parametric values will independently confirm that the sterilization is adequate. Finally, she believed
fail-safe shutdowns and containment structures are needed to control chemical leaks into the facility.

With these risk controls in place, multiple simultaneous system failures would have to occur to result
in a nonsterile device. However, because of the impact if such failures occur, Mary determines that the
residual process risk is high. Therefore, a rigorous validation is appropriate.

Defining the software purpose and intent

Mary wants to have a detailed understanding of how the software in this system will be used. First,
she considers what the software is supposed to do. In this case, the software controls the process of
sterilizing medical devices using a 100 % ETO sterilizing vessel, including the recording of information
for inclusion in the device history record and the analysis of sterilization values to support parametric
release. The new sterilizer was purchased because it can accommodate larger batches than can the
current system; larger batches are needed to meet current product demand. The sterilization operators
will be using the system, along with the quality assurance team, to determine the acceptability for
release of medical devices. Mary understands that this effort will be carried out through real-time
control and monitoring of the sterilization vessel during sterilization cycles and storage of information
in a database. Mary is pleased to learn that the system will be physically located in the site sterilization
facility and, further, that the system will generally be shut down one day a week to allow for any
necessary maintenance.

Mary determines that the software will automate all aspects of the sterilization cycle, from the point of
manually placing the devices into the vessel to the point of manually removing the devices from the vessel.

© IS0 2017 - All rights reserved 59

ISO/TR 80002-2:2017(E)

Mary documents the software’s purpose and intent as follows.

— The sterilization software will control and monitor the sterilization process and will evaluate
sterilization-cycle parameters for parametric release.

Validation planning

Now that Mary understands what the software is intended to do, she is ready to develop the validation
plan at a high level. She knows that she will need to add more detail later but wants to begin validation
planning now so that she can identify software failure risks in an informed manner and use the
identified risks to complete her planning.

Because of the high residual process risk that she identified earlier, Mary believes that she needs to
provide detail and formality in the validation effort. She expects to use a high level of rigor and detail
in the documentation and to have most documents as stand-alone documents rather than combining
them, as is often done for smaller efforts. Because of the high risk associated with the system, she
decides to treat development with the same level of rigor that she would use for developing medical
device software. Consequently, she decides to follow IEC 62304:2006/AMD1:2015 as a life-cycle control
methodology. For guidance on software risk management, she refers to IEC/TR 80002-1. Furthermore,
to be sure that all the potential sources of harm are considered, Mary decides to apply software
fault tree analysis to the development effort. She also decides to formally define and document user
business process requirements and software requirements. Any functionality of special concern will
be specifically identified. Mary also schedules a formal software requirements review. Approval will
be required by the quality assurance team, the sterilization engineer and the manager of sterilization.
Because of the criticality and risk of this system, the final approval of the validation report will include
members of senior management.

Defining software requirements

Mary now writes the software requirements definition. She decides that the software requirements
should deal with alarms, error handling and messages, confirmation of parametric settings, interface
to the device history record system, sensor control and monitoring, motion control and monitoring.

Establishing confidence and control over the software

Using Always-Safe’s internal development control procedures as a driver, Mary uses internal controls
throughout the development life cycle. Because everything is done internally, no vendor activities need
to occur.

Defining software boundaries with other systems

Mary then considers what other systems the new sterilizer will need to interface with. She determines
that the only interface will be with Always-Safe’s existing database system, which will store data
generated during sterilization cycles.

Analysing software failure risks

Although Mary has already determined that the business process being automated is of high risk, she
still needs to analyse the risk of a software failure. Using this document as a reference, Mary selects a
quantitative risk model for this activity. She ranks the new system as follows.

— Risk of “severity” is high (10) because the failure of the system could lead to death or serious injury.

— Risk of “likelihood” is also high (10) because a software failure itself could lead to harm, because the
software is making the determination about the acceptability of the sterilization.

She calculates a risk score of 20, which translates to a high-risk classification. High-risk classification
means a rigorous validation methodology should be applied. The methodology being followed is as
rigorous and comprehensive as if the sterilizer were itself a medical device.

60 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Because of mitigations, the residual risk of this automated system is as low as reasonably possible.
Because of the severity of harm that comes from the system, sterilization is inherently a high-risk
process. Additional activities related to the risk, drawn from IEC/TR 80002-1, are also performed.

Finishing the validation plan

Because Mary has now completed definition of the software requirements, has decided on the
implementation approach and has analysed the software risk, she has enough information to complete
the detailed validation plan.

In writing the first draft of her validation plan, Mary has already decided that a rigorous approach to
risk management should be taken. She has already planned to treat the validation effort in a highly
formal way.

Accordingly, she delineates the risk management tools (identified in IEC/TR 80002-1) that she plans to
use as follows.

— Risk management tools:
— software fault tree analysis;
— risk management plan;
— identification of risk control measures within the manufacturing or business process;
— analysis of software failure (risk analysis).

Mary then considers how she will gain confidence in the software during software design, development
and configuration phases. She has already decided to follow IEC 62304:2006/AMD1:2015 for life-
cycle controls. She now identifies other specific tools that she will use to ensure that the software is
developed properly during the design, development and configuration phases.

— Design, develop and configuration tools:
— 1EC 62304:2006/AMD1:2015 Architecture documentation and review;
— design specification;
— software detailed design and review;
— software coding standards;
— traceability matrix;
— identification of risk control measures within the software system design;
— code review and code verification;
— development and design reviews.

Mary has no doubt that she will need to test this new system extensively. She decides first that a formal
test planning activity will be needed along with the usual unit testing, integration testing and interface
testing activities. However, because this system will be releasing finished devices in real-time, she
decides that she needs to push the limits of the system through stress testing, performance testing and
more extensive combination of inputs testing to mimic as many operating conditions as possible.

— Test tools
— test planning;
— unit tests;

— integration tests;

© IS0 2017 - All rights reserved 61

ISO/TR 80002-2:2017(E)

— interface tests:

— regression tests (as necessary);
— software system test;

— robustness (stress) tests;

— combination of inputs tests;

— performance tests.

Finally, knowing that the system is not complete until it is fully implemented in the production
environment, Mary turns her attention to the validation activities that she would like to see during
the deployment stage. She wants to be sure that the system is adequately documented and that users
are well-trained in its correct use. She also wants to be sure that the system is actually installed as
intended. So Mary'’s validation plan for the deployment phase now includes the following items:

— Deploy tools:
— use procedure review;
— internal training;
— installation qualification;
— operational and performance qualification;
— operator certification.
Planning for maintenance

Mary is concerned about maintenance of the software because of the high residual risk. She plans several
maintenance activities to ensure software quality once the system is deployed, including evaluation
of the effectiveness of user training, system monitoring techniques, correctness checking of system
outputs and defect reporting. She also confirms that calibration and other hardware maintenance
activities are occurring in addition to the software maintenance activities.

Retirement activities

Mary struggled over retiring the previous system because the data generated by that system needed
to be archived for device history record purposes and the old format was not compatible with the
new format. The new system uses a universal data format to allow flexibility upon its retirement in
migrating the remaining data to a new system.

62 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Example 9: Nonconforming material reporting system — Total system upgrade

Advanced Medical Specialities Corporation is upgrading its nonconforming material reporting system
(NCMRS) software, a commercial software package. Advanced Medical chose not to upgrade at the last
major release, so the system is now operating two major releases behind. (Advanced Medical is currently
running version 2 and the latest release is version 4.) To maintain the current software maintenance
agreement, Advanced Medical needs to upgrade. Version 4 of the NCMRS-Pro software has significantly
changed over previous versions. Among other things, the product has been re-platformed from a typical
client-server application to a web-based application. The new software also includes significant new
features and functions. Frank, the business process owner and project manager at Advanced Medical,
has no new requirements over his existing software and process, but he does wish to take advantage of
the new software features.

Frank consults with the regulatory team and decides that the current interface between the ERP
system and the NCMRS can remain intact without modification. Frank recognizes, however, that the
new version is capable of writing data back to the ERP system and that this expanded interface should
be thoroughly challenged during the validation. Frank and his colleagues, the manufacturing quality
engineer and the regulatory team, begin the exercise of determining the scope of the validation effort.
This group is referred to as the “team” throughout the rest of this example.

Defining the process

Frank begins by analysing his current manual process to determine what elements of the workflow will
be automated by the new software. The new software will change the following features:

a) recognition of potential nonconforming materials or products (out of scope);

b) input of information related to the material and the circumstances surrounding its discovery
(in scope);

c) routing of information to allow for proper identification, evaluation, investigation and disposition
of the material (in scope);

d) distribution of information to important stakeholders and to other computer systems that are
required for proper handling of financial, purchasing, planning and scheduling transactions (in
scope);

e) physical disposition of the material, although pertinent data about the disposition will be recorded
in the system (out of scope).

Analysing the process risk

Frank is aware that this process and the supporting software carry a risk. Failure of the process could
have serious consequences, including the following:

— inadvertent release of nonconforming materials onto the manufacturing floor;
— inadvertent release of nonconforming product into commercial distribution;
— increased cost or manufacturing attributable to scrap, rework and the like.

Frank and the regulatory team consider what risk control measures are in place to mitigate these risks,
including the following:

— procedural controls to detect, segregate, control and correct nonconforming materials;

— management and quality review of statistical process control data and other measures to identify
developing trends that can signal when processes are not in proper control;

— ongoing training of operators to ensure compliance with procedures;

— financial reports to help identify material use that would suggest uncharacteristic issues with
manufacturing processes.

© IS0 2017 - All rights reserved 63

ISO/TR 80002-2:2017(E)

With those risk controls in place, multiple simultaneous system failures should occur to result in a
failure to appropriately control nonconforming materials or products. However, because of the potential
quality, regulatory and financial impacts of such failures, Frank determines that the residual process
risk warrants rigorous confidence-building activities to help ensure that the software is operating
correctly and that it meets the intended use.

Defining the software purpose and intent

Frank wants to have a detailed understanding of how the software upgrade will affect his users and
the organization. Frank concludes that the software is essentially an automated issue tracking and
management tool. Manufacturing personnel who work with standard tools, equipment and other
instruments are responsible for recognizing and isolating potential nonconforming materials and
products. Once an issue is recognized, details about the situation are entered into the software. The
software then manages the workflow, assignments and notifications to resolve the issue and documents
the various activities that are necessary to deal with the disposition of the materials and products. The
software upgrade should streamline the process, thus making it more efficient, and it should provide
the quality assurance team with more powerful tools to analyse and trend data and give the team
greater visibility over quality issues. Frank understands that the process changes necessitated by the
upgrade are primarily to the workflow and the distribution of information. The software itself makes
no final decisions, nor does it independently determine any outcomes, but the software does hold and
document the decisions made by humans interacting with the system.

Frank determines that the software will automate the workflow aspects of the non-conformance
processing. The following statement of the software’s purpose and intent was composed by the
regulatory team.

— The NCMRS software is intended to support the processing of nonconforming materials and
products. The system is used to document the process steps, as defined by SOP, and records the
process steps performed, the time they were performed, the personnel who performed them and
the outcome of each step. The system makes data readily available for quality monitoring and
improvement activities.

Defining software boundaries with other systems

The NCMRS software has two interfaces, including one primary interface with the ERP system and
one secondary interface with the company’s human resource (HR) system. The primary interface is
designed to be a twice-daily scheduled batch process to update the system with data on finished goods,
in-process goods, bill of material and bill of operations. The interface will also supply nonconforming
material report (NCMR) data back to the ERP with data about quality holds, material disposition and
other transactional information. The secondary interface is unidirectional from the HR system and is
intended to update NCMR employee data for scheduling and assignment purposes.

[nitial validation planning

Frank has gained additional confidence that the NCMR process and software are adequately understood
and properly documented. He is now ready to develop a high-level validation plan. Additional details
will be developed during the planning process.

Theregulatory team identifies the documents that will add the greatest value and will adequately specify
what the software is expected to do. The documents will generally be referred to as “Requirements,”
but will not be a typical set of user requirements per se. Instead, the documents are going to be a series
of detailed descriptions of how the software is expected to operate. As such, the analysis of automated
and manual testing will be more qualitative in terms of its review and outcomes. It will look holistically
at the output and whether the system is performing as intended, rather than looking at individual tests
to determine if specific user requirements have been met.

The document set will include the following.

a) Workflow and business rule documentation. This area of the software is configurable, so the team
will prepare the desired set of configurations it intends to make and will develop detailed process
flows and logic diagrams that describe the operation.

64 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

b) Interface documentation. These documents will describe what data elements move from the ERP
and HR systems to the NCMRS, what data elements move from NCMRS to the ERP system and when
such elements move.

c) Data migration documentation. This set of documents will describe what historical data will be
moved to the upgraded system.

The validation plan will include the outcome of the review and approval of each of these documents.
Approval will be required by the quality assurance team, the manufacturing engineering department
and the information systems group. Because of the system'’s criticality and risk, all members of senior
management should give final approval to the validation report.

Defining software use requirements

Frank and members of the team go about the business of assembling the document sets described
above, referring to the system documentation supplied by the vendor and the previous documentation
of the existing interfaces.

Establishing confidence and control over the software

Frank has had a positive experience with this software and the vendor. Frank now identifies five main
efforts that the team will use to establish confidence in the software.

a) The vendor has an approved status with the company in accordance with Advanced Medical’s
internal policies and procedures. Previous audits have revealed that the vendor has an adequate
quality system and SDLC. The vendor produces commercially available software that has an
established history in the regulated industry for uses similar to Advanced Medical's intended use.
The vendor will be periodically audited to maintain the approved status.

b) Advanced Medical will use a vendor-supplied automated testing tool to verify that the software
has been installed correctly and is functioning within the boundaries of the test suite. This tool
can process more than 8 000 various transactions in several hours. The tool does not, however, test
certain configuration options that the company plans to include.

c) The team will produce an adjunct test plan that includes parallel processing of a statistically
significant sampling of actual paper-based non-conformance reports. Outputs will be reviewed to
ensure accuracy, data integrity and compliance with procedure.

d) The team will verify data conversion and migration of existing system records by using a sampling
technique that ensures that historical records retain their integrity. Record counts will be used to
verify 100 % conversion.

e) Data interfaces will be verified using a sampling technique to measure completeness and accuracy
of the data transfers.

Analysing software failure risks

Frank uses this document as a reference to determine the validation rigor that is going to be required.
Software failures could result in loss, corruption or mishandling of electronic records. Mitigation of
the risks is controlled by the vendor’s internal quality systems, by the installation qualification of
the software (automated test tool) and by adjunct use case testing and verification. Because of the
downstream process controls, the residual risk of this system is deemed to be as low as reasonably
practicable.

Final validation planning

This determination implies that a fairly rigorous validation methodology will be applied. The
methodology being followed ensures, to a reasonable extent, that the software will perform as intended.
The team members conclude that they have adequately defined the requirements of the system, that
they have decided on the implementation approach, that they have analysed the software risk and that
they have obtained enough information to proceed with a detailed validation plan.

© IS0 2017 - All rights reserved 65

ISO/TR 80002-2:2017(E)

The bulk of testing to be performed will be accomplished using an automated test suite, which the team
has reviewed and has determined to be valid for this intended use. Additional adjunct use case testing
will be conducted using actual business cases originating from the manufacturing floor. The purpose
of these tests is a) to verify that the process works as intended, b) to accelerate user acceptance and
training and c) to verify that configuration changes have not adversely affected the software. The
adjunct testing is not intended to replace the vendor’s internal system testing, which has previously
been verified by an audit. Successful completion of the automated testing will establish that the
software is correctly installed and is functionally acceptable.

The team selects the following tools from this document to conduct the remaining installation,
configuration, testing, verification and validation efforts.

— Design, development, and configuration tools:

— architecture documentation and review;

— identification of risk control measures within the software system design;

— configuration design reviews;

— review of vendor’s “known issues” list;

— review of vendor’s base system validation documentation;

— review of “out-of-the-box" software workflow process diagrams;

— review of the “out-of-the-box" standard reports library;

— gap analysis of configuration changes made to standard workflows and business rules.
— Test tools:

— test planning;

— description and outcomes of the vendor-supplied automated test tool for installation verification
and qualification;

— installation and performance testing (part of the automated test suite);

— use case testing to cover configuration changes using actual non-conformance records as inputs
rather than artificially constructed test cases;

— sampling plan to verify migrated data;

— system checks to verify operational interfaces.
— Deploy tools:

— use procedure review;

— internal training;

— operator certification.
Planning for maintenance

Frank plans to use several maintenance activities to ensure ongoing software quality once the system
is deployed, including evaluation of the effectiveness of user training, system monitoring techniques,
periodic auditing of system outputs and defect reporting, both internally and to the vendor. Frank has
established a point of contact with the vendor so that notifications of bugs, maintenance releases and
other communications come to the attention of the proper staff people responsible for maintaining the
software at Advanced Medical.

66 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Retirement activities

Frank plans to keep the current system available once cut-over has taken place as an opportunity to
compare throughput and outcomes from which performance metrics can be compiled. After the new
upgrade has been successfully operational for 6 months, Frank will completely decommission the

previous system.

© IS0 2017 - All rights reserved 67

ISO/TR 80002-2:2017(E)

Example 10: Software for scheduling non-conforming material report (NCMR) review board
meetings

A company with 1 000 employees decides to try out a new software solution that will help the company
electronically schedule meetings for required NCMR review activities. The project team assigned to
implement the automation learns of a commercial software program that has just been released. The
vendor claims that the software can schedule meetings using data received through other computerized
system interfaces. The project team decides this software might work well for scheduling the company’s
NCMR review board meetings if the software is able to gather NCMR data from the company’s validated
NCMR database system.

Defining the process

The team gets together to discuss the process of scheduling NCMR review board meetings and to review
the company’s NCMR processing procedures. The discussion results in the following defined process.

a) Once a non-conformance is identified, the associated material is labelled, segregated and logged
into the validated NCMR database.

b) Weekly meetings are held to review the results of all investigations related to the non-conformance
and the recommended disposition actions.

c) Foreachmeeting, alist of NCMRs are identified that are ready for review, along with the individuals
who need to attend, to present results and to participate in the disposition actions and approvals.

d) One day before the NCMR review board meeting, a meeting request is sent to those who need to
participate. This request includes the list of NCMRs to be discussed.

Process risk analysis

Through a brainstorm activity, the team members evaluate the potential harm caused by possible
failures in this process:

— ameeting request is not sent;

— ameeting request is not sent at the correct time;
— incorrect individuals are requested to attend;

— anincorrect list of NCMRs is identified for review.

The team notes that the released NCMR processing procedure requires an individual to be assigned as
the NCMR processing manager. This individual is responsible for ensuring that all NCMRs are processed
in a timely manner and for publishing metrics on the NCMR processing from data found in the validated
NCMR database. In all cases that the team identifies, the resulting harm of the meeting scheduling
software is a disruption in the efficiency of the NCMR review board meeting. This disruption places an
additional burden on the NCMR processing manager’s time. Therefore, the process failure risk analysis
is determined to be low in terms of regulatory risk, environmental risk and risk of harm to humans.

Defining intended use
The team defines the purpose and intent of the software use, regulatory use and boundaries as follows.
— Software use

— Who? Software will primarily be used by the NCMR processing manager.

— What? Software will automatically send out electronic meeting invitations to individuals who
are identified as needing to attend that week’s meeting.

— When? Software will be used when NCMR meetings need to be scheduled.

68 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

— Where? Because all attendees are local, software will need to be used only on the local area
network (LAN).

— How? Software retrieves a list of NCMRs that are open and in need of review by the NCMR
review board. The NCMR processing manager identifies the NCMRs to be reviewed at the next
meeting. The software then uses a table set up by the NCMR processing manager to identify the
individuals who need to attend a given meeting. The meeting date is identified by the NCMR
processing manager. One day ahead, the software sends out an electronic meeting invitation to
the proper participants.

— Why? Software will be used to improve the timely notification of the proper individuals to
attend the weekly NCMR review board meetings.

— Boundaries

— The boundaries of this software are at the interface with the NCMR database and the graphical
user interface.

— Regulatory use

— The software does not store any information that would be used to prove compliance to
any regulatory requirement. All device history record information related to NCMRs or the
processing of NCMRs is recorded either on paper or in the validated NCMR database.

After creating and reviewing this statement of purpose and intent, the team determines that the
proposed software does not automate an activity required by regulation, nor does it create quality
records required by regulation. Although it is used to facilitate meetings that are part of a regulated
activity (the NCMR process), the software itself does not automate a regulated activity. As a result, the
team documents the intended use as listed previously and clearly indicates that formal validation is not
required. However, the team also recognizes that a small change in usage during the maintain phase
could significantly affect the team'’s original validation decision. For example, if the software is used
to store meeting minutes or is used to produce a list of individuals who attended a meeting for review
by a regulatory investigator, the original “out of scope” decision would be affected. Therefore, the team
updates its quality system procedures to include the evaluation of the intended use on a periodic basis
or as a result of changes to associated processes.

Toolbox usage
The following tools were employed.
— Develop-define phase:
— process requirements definition;
— process failure risk analysis;
— intended use definition,
— Maintain phase:
— planning for maintenance.
Discussion

As a result of identifying the specific use and the boundary of activities automated by this software,
the team is able to appropriately declare that the software does not meet the definition of software for
medical device quality management system processes and, therefore, the software does not need to
be validated. Great care should be taken when identifying such software to ensure that the actual use
of the software is completely covered in the intended use definition. It is also important to recognize
that intended use can easily change during the maintain phase of the life cycle even without changes in
the software. Planning for maintenance is therefore an important part of ensuring proper control over
software used by a company.

© IS0 2017 - All rights reserved 69

ISO/TR 80002-2:2017(E)

Example 11: Approved vendor list system

Acme Corporation is a class B medical device manufacturer. The firm has been using a manual procedure
to maintain an approved vendor list (AVL). Acme Corporation wants to develop an AVL system to
automate the process of checking whether a vendor has been approved to provide a specific part.

— Jack, the Acme project manager for the new AVL system, determines that the AVL process is a
medical device quality system process related to purchasing controls in ISO 13485.

Therefore, the proposed AVL system falls under requirements for software validation.

Defining the process

To better understand the requirements and risks involved in developing an AVL system, Jack defines
the associated business process as follows.

a) When the engineering group wants a new vendor to be approved, samples of the vendor’s parts are
submitted to the quality group for qualification.

b) After qualifying the vendor’s parts, the quality group sends an e-mail to the purchasing group
authorizing entry of the vendor’s name and approved part numbers and descriptions into the
approved vendor list (AVL). This list is maintained on paper in the purchasing group. The receiving
inspection group has access to the AVL.

c) The purchasing group performs a manual check to verify that the vendor’s name has been correctly
added to the AVL.

d) When the purchasing group orders parts, it refers to the AVL to ensure that the vendor is approved
and that the vendor is authorized to supply the parts requested.

e) If the vendor is approved, the purchasing group signs the requisition indicating that they have
checked the AVL.

Analysing the process risk

Jack then considers what could go wrong in the current process. If the process breaks down, parts could
be ordered from an unapproved vendor, either because an unapproved vendor has been added to the
AVL or because the purchasing group fails to check the AVL before ordering parts.

Jack then considers what risk control measures are in place to mitigate such risks. Jack sees that the
purchasing group has a procedure in place to manually check that vendor names have been correctly
added to the AVL and that access to the list is restricted to authorized employees. Furthermore, Jack
sees that the current purchasing procedure requires the purchasing group to sign off that the vendor
is on the AVL before issuing the purchase order. The control ensuring that orders are placed with
approved vendors is in the receiving inspection department, where the AVL is again checked on receipt
of parts.

On the basis of these risk control measures, Jack determines that the residual process risk is low. He
therefore suspects that the new AVL system will probably be a low-risk system.

Defining intended use

Now that Jack understands the business process to be automated, he writes the statement of purpose
and intent for the proposed new AVL system.

— The AVL system will automate the check of vendors and parts againstan electronic AVL listto ensure
that parts are ordered only from authorized vendors. The new system will employ an AVL database
that will be linked to the existing purchase order system and will be used by the Acme Corporation
quality group at headquarters during the vendor qualification process and by purchasing agents
during the purchase order generation process.

70 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Jack also considers other systems and processes with which the AVL system will interface and he adds
some language to his statement to clarify the boundaries for the new system.

— The purchasing process will interface with the process being automated by the AVL system. The
interface will consistofa query to the AVL database for the status of a vendor specified on a purchase
order. The purchasing process does not confirm the accuracy of the data in the AVL and does not
interface with the vendor assessment process.

Validation planning

Now that Jack understands the business process to be automated and has determined the purpose and
intent of the new system, he is ready to develop the validation plan at a high level. He knows he will
flesh out this plan in more detail later, but he wants to begin validation planning now so that he can
identify the level of validation effort needed.

Earlier, Jack determined that there is low residual process risk in the existing AVL process. Therefore,
he believes that he does not need to provide very much detail or formality in the validation effort. He
knows that it is important to define user business process requirements and software requirements
for the new system. But because the system is low risk, Jack does not need to have separate documents
with separate sign-offs on each document. Therefore, he decides to combine user business process
requirements, software requirements and his test plan into a single document using a tabular format.

Furthermore, because this system has such a low risk, Jack determines that there does not need to
be extensive management review of the validation effort. He decides that approvals by the manager
of supplier development and the quality assurance representative should be sufficient. But Jack also
believes thatto be sure the userrequirements are correct, he should also add reviews by arepresentative
of the purchasing group.

Jack starts the draft of his validation plan in accordance with his decisions. Acme Corporation has a
standard format to which all validation plans should adhere. Some sections of the validation plan are
not defined, but Jack will update the plan after the initial system design is approved.

Defining software requirements

Jack now writes the software requirements. He decides that the software requirements should include
the “what” (actions required by the AVL process or system), an interface specification for how the AVL
system will interface with the purchasing system, a data dictionary and examples of valid queries that
the new system should be able to handle.

Defining software boundaries with other systems

Jack then considers other systems with which the new AVL system will need to interface. He determines
that the only interface will be with Acme’s existing purchasing system, which can query the AVL
database by means of simple structured query language (SQL) queries.

Establishing confidence and control over the software

Jack now needs to decide what approach and what technology he should use to build the new system.
Because the business requirements are fairly simple, transaction volume will be low. Because the AVL
system is a low-risk system, Jack decides to develop it using Microsoft Access?), a database system that
is widely available and easy to use.

Because Microsoft is an outside software developer, Jack needs to decide what types of activities he
should perform to establish confidence in Microsoft Access. Jack notes that Microsoft Access is a widely
used tool and that, in the past, any problems or issues with this product have been quickly identified
and publicized on Internet message boards. Combined with the fact that the AVL system is a low-
risk system, Jack decides that he will not need to perform a vendor audit for Microsoft as a database
developer.

2) Microsoft Access is an example of a suitable product available commercially. This information is given for the
convenience of users of this document and does not constitute an endorsement by [SO of this product.

© IS0 2017 - All rights reserved 71

ISO/TR 80002-2:2017(E)

Because the new system contains electronic records, Jack decides to implement third-party “wrapper”
software around Microsoft Access to provide the needed controls to ensure the validity of the records.

Analysing software failure risks

Although Jack has already determined that the business process being automated is of low risk, he still
needs to analyse the risk of a software failure. He decides to use a quantitative risk model (with a scale
of 1 to 10) for this activity. He ranks the new system as follows.

— Jack ranks “severity” as medium (6) because software failure would only indirectly cause harm. He
bases this ranking on the presence of downstream controls in the process.

— Jack ranks “likelihood” as low (1) because the database design is quite simple, making it less likely
that critical bugs would not be caught during testing.

— The combination of the rankings translates into a low-risk classification.
Therefore, Jack will perform validation tasks that are appropriate to a low level of risk.
Finishing the validation plan

Now that Jack has defined the software requirements, decided on the implementation approach and
analysed the software risk, he has enough information to finish the validation plan. At this point, he
steps back and asks himself, in light of everything he knows about the system, the implementation
approach and the software risk, the following question: “What validation activities would really give
me the confidence that this system is fit for its intended use?”".

Because the system is a purchased database tool and is relatively low risk, Jack feels that the validation
activities he has planned are adequate, but he needs to address the environmental requirements to
ensure that changes to the operating system and Access version are well controlled. He updates the
validation plan to call for formal software configuration control.

Because the system is being developed by a third party, Jack needs to be certain that the developer
correctly translates the requirements for customization, inputs, interfaces, data storage and output.
Because this system will depend on inputs from existing systems, Jack adds an interface test and an
integrated system test as an important activity in the validation plan to confirm the correctness of the
developer’s work.

Finally, Jack wants to be sure that the developer maintains proper version control during development,
so he adds software version control as a required activity to his validation plan.

Jack’s critical thinking leads him, therefore, to include the following tools for the rest of the development
and validation effort.

— Design, development and configuration tools:

— software architecture documentation and review;

— traceability matrix (inherent in the requirements specification);

— risk control measures (documented in the user specification).
— Test tools:

— integration test (documented in the requirements specification);

— interface test (documented in the requirements specification);

— software system test (documented in the requirements specification).
— Deploy tools

— user procedure review;

72 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

— internal training for the application;
— installation qualification.
Planning for maintenance

Jack thinks ahead to what activities might be appropriate to ensure software quality once the system is
deployed. Given the system’s low residual risk, Jack decides that there should be a quarterly review of
the accuracy of the AVL data in the database. Jack includes a section in his validation plan to document
the quarterly review and issues a request for development and implementation of a procedure to ensure
that the quarterly review is conducted once the system is live.

© IS0 2017 - All rights reserved 73

ISO/TR 80002-2:2017(E)

Example 12: Calibration management software

The XYZ Medical Company is growing fast. XYZ has purchased companies in Europe and Asia. The
company's growth means that XYZ's calibration management needs are growing as well. Currently, the
XYZ calibration manager keeps a book with all calibration information in it, and on a weekly basis she
reviews the calibrated equipment inventory to determine if any items require re-calibration. As the
company grows, its inventory is becoming too large and globally dispersed for one person to manage
using a paper system. It is time to put a computerized system into place.

Defining the process

XYZ Medical has a standard operating procedure (SOP) that requires computerized systems that
automate part of the quality system to be validated for their intended uses. XYZ first defines the
calibration management process to figure out what risks are inherent in the process and to determine
whether the software solution will automate all or part of the current process. XYZ managers review
the calibration management SOP, which contains details on the following steps:

a) the new equipmentis procured;

b) the new equipment is given a unique identification (ID) number;

c) the calibration procedure is determined;

d) the new equipment is calibrated;

e) the calibration status is recorded on the equipment;

f) calibration records are maintained, including calibration requirements, status, and expiration date;
g) calibration records are searched for reporting and for calibration management activities.

Process risk analysis

The calibration management process carries some inherent risks, regardless of whether it is a paper
system or an electronic system. The risks associated with the process are as follows.

— When a piece of equipment is used after its calibration is expired, an incorrect measurement is
recorded. This problem can have a number of consequences, depending on the piece of equipment
and the stage in the process in which it is used.

— An incorrect label placed on a piece of equipment will indicate that the equipment is calibrated
when it is actually out of calibration. This error also has a number of consequences depending on
the piece of equipment and the stage in the process.

— Calibration records can be lost and a backlog of equipment with expired calibration can develop.
This problem can delay work.

— If calibration status is incorrectly recorded, an expired piece of equipment can be used.
— If two pieces of equipment receive the same identification number, records will not be unique.

The process is determined to be of high risk because of the potential outcomes of incorrect calibration.
In the worst-case scenario, out-of-calibration equipment could be used to measure a medical device for
final acceptance and the device could be given an acceptable status when it should not have.

To mitigate this issue, the XYZ managers should update the SOP to include instructions to each user of
the equipment. Each user should check the calibration expiration sticker on the equipment before use.
During the execution of protocols that use calibrated equipment, each user should record the equipment
ID number and the calibration due date of the piece of equipment used. Users are also to be trained
on how to identify items that need to be calibrated and are taught not to use any equipment with an
expired label or with no label.

74 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

The implementation of such measures brings the residual risk of the system to moderate. XYZ managers
believe that user instruction is an appropriate measure but is not effective enough to bring the residual
risk to low.

Defining software intended use

The software system will not perform the calibration activity; it will be a database that contains
calibration information and data regarding equipment and its calibration history and status. The
software system will control steps b), f) and g) of the calibration process.

The XYZ managers agree that XYZ will validate the system for the following purpose and intent.

— The calibration management system is used to provide identification numbers for equipment that
requires calibration, to print labels for the calibrated equipment, to store calibration results data
and to report on the calibration status of equipment. The calibration management system automates
part of the ISO 13485 requirements covering inspection, measuring and test equipment.

Validation planning

To set the stage for the validation activities, the XYZ managers start the validation planning by setting
expectations for the content of the deliverables and for the involvement of cross-functional groups in
the process. They document the following steps.

— Define level of documentation rigor for tools selected.

— The documentation rigor for the system will be moderate. Hence, key deliverables will be
separately created and approved.

— Definelevel of scrutiny (managerial and cross-functional involvement and review) for tools selected.

— Given that this system will be used globally for calibration management, it is appropriate that
global information technology management and operations management have visibility in the
validation process for the system, in the form of approval of the validation plan and validation
report for the system. In addition, the new site equipment managers will be involved in the
review and approval of all documents.

— Select “define” tools from toolbox:
— user and business process requirements;
— software requirements;
— formal software requirements review.
Defining software requirements
Software requirements will contain the following elements:
— functional workflows;
— electronic record and electronic signature requirements;
— data logic requirements;
— reporting requirements;
— requirements specific to label printing for equipment;
— user security and profiles;
— performance requirements;

— capacity definitions.

© IS0 2017 - All rights reserved 75

ISO/TR 80002-2:2017(E)

Establishing confidence and control over the software

The XYZ managers conduct a survey of three vendors of this type of product and determine that one
vendor’s product best matches XYZ's planned intended use. The vendor of this system is widely used
in the medical device industry, although this version of the product is relatively new. Some confidence
can be gained from the previous version's track record, but a known defects analysis will be carried out
on the basis of current reported issues and testing of new functionality from the previously released
version will receive special scrutiny by the test development group.

Define software boundaries with other systems
This software has no interfaces with other software systems.
Software risk analysis

The validation team sits down with the global calibration managers and together they use the
questionnaire in Table C.16 to determine the software risk. They first identify the risks and then
identify risk control measures for those risks. Finally, they evaluate the acceptability of the residual
risk (see Table C.17).

Table C.16 — Example 12 — Risk analysis

Indicate “yes”
or “no.” If “yes,”
Risk identification question assign arisk
identifier (risk 1,

risk 2, ... risk n)

1.1 Product Is there a potential risk to product safety if the software malfunctions? |Risk1 —

fety (h 1 , : : .. . -of-calibrati
safety (harm) Yes, in all cases. Out-of-calibration equipment can be misidentified by E;Lfi:mcjnﬁls‘au::é

the software as calibrated equipment.

— Patient harm—Yes. Qut-of-specification product could be used on
the patient if out-of-calibration equipment is used for measurement.

— Operator harm—Yes. If measurement of temperature or force is
wrong, the operator could be pinched or injured.

— Bystander harm—Yes. Such harm is equipment dependent.

— Service person harm—Yes. If measurement of temperature or force
is wrong, the service person could be pinched or injured.

— Environmental harm—Yes. If pressure is measured incorrectly
and the vessel contains environmentally harmful materials, the vessel
could leak.

1.2 Product Is there a potential risk to product safety if the user of the software Seerisk 1.
safety (harm) makes a mistake?

Yes, in all cases, if the user enters incorrect calibration data for the piece
of equipment (see 1.1).

— Patient harm—VYes.

— Operator harm—VYes.

— Bystander harm—Yes.

— Service person harm—YVYes.

— Environmental harm—Yes.

2.1 Product Is there a potential risk to product quality (other than a safety risk) if See risk 1.
quality the software malfunctions?

Yes. Product could be out of specification because out-of-calibration
equipment can be misidentified by the software as calibrated
equipment. Although misidentification is not a safety issue, it could
prompt customer dissatisfaction.

76 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Table C.16 (continued)

Indicate “yes”
or “no.” If “yes,”
Risk identification question assign arisk
identifier (risk 1,
risk 2, ... risk n)
2.2 Product Is there a potential risk to product quality (other than a safety risk) if
quality the user makes a mistake?
Yes. If the user enters incorrect calibration data for the piece of
equipment and the equipment is used to measure a product, the product
could be out of specification. Although incorrect specification is not
a safety issue, it could prompt customer dissatisfaction.
3.1 Record Is there a potential risk to record integrity in a system thatisarecord |Risk2 —
integrity repository? Calibration records
. . lost
Record loss—Yes. Calibration records could be lost. are 1os and caused
compliance issue.
Record corruption—Yes. Calibration records could be corrupted. Risk 3 —
Calibration records
are corrupted and
cause a
compliance issue.
41 Is there a potential risk regarding the ability to demonstrate regulatory |See risks 2 and 3.
Demonstration |compliance?
of compliance : :
to an 1SO Record loss—Yes. Calibration data could be lost.
standard Record corruption—Yes. Calibration data could be corrupted.
Table C.17 — Example 12 — Risk evaluation and control
Risk Description Severit Control Residual risk
identifier P y
Risk 1 Out-of-calibration equipment High System is designed to print Acceptable
is used to measure product or labels that contain the
1s used to measure pressure equipment ID number, serial
or force. (Risk occurs because number, and calibration status
the software misidentifies the and due date. Procedurally,
equipment or because the user employees are trained to verify
enters incorrect calibration data this information before using
for the equipment.) the equipment. Another process
requires that entered data be
verified by a second person
before being committed to the
calibration record.
Risk 2 Records are lost and calibration [Medium All calibration data are Acceptable
management activities cannot maintained in paper records
be defended. from the calibration house.
Risk 3 Records are corrupted and Medium [All calibration data are Acceptable
calibration management maintained in paper records
activities cannot be defended. from the calibration house.

On completion of the risk analysis, the XYZ managers are satisfied that the residual risk after mitigations

is acceptable.

© ISO 2017 - All rights reserved

77

ISO/TR 80002-2:2017(E)

Finishing the validation plan
To finish up validation planning, the managers amend the plan to contain the following selection of tools.
— Implementation tools:
— traceability matrix;
— review of system configuration.
— Testing tools:
— sizing analysis;
— test planning;

— vendor-supplied test suite, with additional testing for the planned configuration and for new
functionality from previous version of software.

— Deployment tools

— internal training for application;

— installation qualification (for server and workstations).
Planning for maintenance

In addition to planning for the validation of the system, the XYZ managers decide that planning for
maintenance of the system will be beneficial because maintenance is sure to be needed at some point.

System monitoring techniques will be put in place to review all defects, use problems and changes to
intended use.

A plan will be instituted to classify changes to the system (i.e. hardware, upgrades, patches, security
issues) so that changes can be implemented more efficiently.

78 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Example 13: Automated vision system

The engineers in Gary's company are very good at their jobs. They know the product that is produced
in Gary’s automation area, a metal bar, varying in length from 1,27 cm to 3,81 c¢m, so they find two
applications for the bar: one using bars measuring 2,54 cm or smaller and another using bars 3,18 cm
in length (plus or minus 0,64 cm). All of the bars are 0,32 cm wide. Both applications are for medical
devices and require the bar to be a specified length. Gary, the engineer for the automation area, is
tasked with validating the automated vision system that sorts the parts. This system is replacing a
manual measurement/sorting process. There are no other changes to the process, so this is the full
scope of the validation.

Description of process

The specification for bar thickness is the same for both applications and this dimension is confirmed
in the raw material used by the bar-cutting machine. All acceptance criteria are confirmed upstream,
except the bar length, which is measured by Gary’s automated vision system.

The machine’s process is simple. The bars are loaded into a bin that uses a funnel to place the bars
on a conveyor belt, one at a time. Each bar is conveyed to a stop, where a camera looks at the bar and
measures the length. Depending on the result, the bars are then conveyed into two bins: one for bars
2,54 cm or smaller and another for longer bars.

Downstream, there are no additional checks of the bars’ length. There is an increased risk of harm to
the patient if the wrong-size bar is used because the wrong-size bar can result in leaks in the devices
being manufactured. No method has been devised to test for this increased risk downstream. If the bar
is the correct length within the specified dimensions, there will be no leaks in the device. The devices
have been manufactured for years and the risk is well understood. The automated vision system is
replacing a manual measurement process.

Define intended use
Because he understands the process being automated, Gary starts by defining purpose and intent.

— The software is intended to confirm that a single metal bar is on the conveyor and to measure
its length.

Risk analysis

Gary uses the local risk analysis process to determine that the risk of failure for the system is high
because there is no way to detect when the wrong-size bar is used except through product failure or
destructive test. Patient harm can result from the failure. The critical parameter for the process is the
precise length dimension of the bars. Automation neither increases nor reduces this risk.

Validation planning

In his first iteration of validation planning, Gary plans to use a rigorous validation process (a result of
the high-risk rating from his risk analysis). After reviewing the toolbox for potential validation tools, he
plans a formal requirements definition document and schedules a software requirements review. This
review will include the manufacturing engineer, another automation engineer and the quality engineer.

The software for this system will be developed in-house, but, on the basis of past system automations,
the development will be relatively straightforward.

Risk control measures
Two areas of risk are identified for focus.

a) Confirmation is needed that one bar is in place to measure. The machine conveys the bars down
a narrow path, measuring 0,64 cm wide and 0,48 cm tall. Therefore, the bars can only enter the

© IS0 2017 - All rights reserved 79

ISO/TR 80002-2:2017(E)

path lengthwise and will not enter if one bar is on top of another because the opening is not large
enough. However, two parts could be next to one another in the conveyer.

To mitigate this risk, the software will check the width of each bar before checking the length. If a
bar is greater than 0,32 cm wide (20,08 cm, per the previously checked specification), the bar will
be rejected because two bars are in the conveyor. A third bin (reject bin) is added to the machine
design for that purpose.

b) Bars could be too close together to tell when one bar ends and the next bar starts. The software
will convey any bars that cannot be confirmed as equal to or less than 3,81 cm into the reject bin.

Validation tasks

Next, Gary turns to the validation tasks. He identifies the need for a formal design document and
plans a formal inspection of each section of the design with the same team members who reviewed
the requirements. In addition, once the code is generated, it will be reviewed against the design by
the other automation engineer and the manufacturing engineer, who are both experienced in software
development. No vendor management activities are selected because the software is being developed
internally. The automation engineer, the manufacturing engineer and the quality engineer will all be
asked to review traceability of the software and the design back to requirements. They will perform
this same exercise after testing to ensure that all requirements were completely tested.

Gary’s choices from the test section of the toolbox include test planning, and the test plans are to
include details of the software environments and the expected test results. He plans several types of
testing at various points in development, including unit testing, integration testing and system testing.
Normal and error test cases will be used, as well as performance testing related to the speed of the
conveyor belt. The test plans need to be reviewed and approved by the other automation engineer,
the manufacturing engineer and the quality engineer, in addition to Gary. The test report includes the
actual test results, as compared with the expected results, a pass/fail indication, a test identification
and documentation of problem resolution and regression testing for any failures. For the test report,
Gary needs approval from the same group.

Implementation, test and deployment

For the deployment of the automated vision system, Gary reviews the deployment tools in the toolbox
and decides that installation qualification is required. In addition, he determines that a user procedure
should be created and that operator certification will be required for the users of the system.

Maintenance

Gary’s department collectively plans maintenance for all systems on the manufacturing floor. No special
planning or action is needed in this area.

80 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Example 14: Pick and place system

Hi-Quality Medical Corporation is a class B medical device manufacturer. Hi-Quality wants to automate
the placing of partially finished parts from one station into cartridges that are part of a medical device
manufactured by the company.

Jill, who is the project manager for the new Pick and Place (P and P) system, determines that the P and P
process is a medical device quality system process, according to ISO 13485, because it is part of the
manufacture of a medical device. Therefore, the proposed P and P system will fall under requirements
for software validation,

Defining the current process

To better understand the requirements and risks involved in developing a P and P system, Jill defines
the associated business process as follows.

a) The parts coming from station 11 in the manufacturing process are placed into cartridges for
station 12 (at a rate of 20 parts per cartridge). Currently, this operation is performed manually by
an operator.

b) The operator then manually places the cartridges onto the incoming track of station 12.

c) The operator manually inspects the cartridge to confirm proper placement of the parts. [Steps b)
and c) take about 3 min to complete per cartridge.]

d) The cartridge continues onto other assembly steps, which include a visual inspection that confirms
the lack of deformities from all previous steps in the process.

Analysing the process risk

Jill next considers what could go wrong in the current process. Her analysis shows that the following
events could occur.

a) The operator could deform the partially finished part. The deformity would be detected
downstream by an inspection station.

b) The operator could incorrectly place the part in the cartridge or could miss a slot in the cartridge.
Incorrect placement or missing of the slot is currently detected at station 12 during the manual
inspection.

Given these risk control measures, Jill determines that the residual process risk is low. She thus expects
that the new P and P system will also be a low-risk system.

Defining the new process

After assessing the process risk and using her understanding of the P and P system, Jill defines the new
process as follows.

a) The P and P system will be loaded with cartridges.

b) The P and P system will pick parts from station 11 and will insert them into the cartridges (at rate
of 20 parts per cartridge).

c) The P and P system will visually inspect the cartridge to ensure that all parts are correctly placed
and that all slots in the cartridge are filled. Any incorrect cartridges will automatically be rejected.

d) The P and P system will place the acceptable cartridge onto station 12. [Steps b) to d) will now
take 1 min.]

e) The cartridge will continue onto other assembly steps, which include a visual inspection that will
confirm the lack of deformities from all previous steps in the process.

© IS0 2017 - All rights reserved 81

ISO/TR 80002-2:2017(E)

Defining software intended use

Jill now understands the process to be automated and is ready to write the statement of purpose and
intent for the proposed new P and P system.

— The P and P system will pick up the parts coming from station 11 and will place them in cartridges. It
will confirm that all cartridge slots have been properly filled, will reject any incorrect cartridges and
will then move the cartridge onto the input line for station 12 at a rate of one cartridge per minute.

Jill then considers whether the P and P system will interface with other systems. She concludes that
there are no other interactions. She determines that there are user interfaces but no software interfaces.

Validation planning

Having analysed the business process to be automated and having determined the purpose and intent
of the new system, Jill is ready to develop the validation plan at a high level. She will need to add more
detail later, but by beginning validation planning now, she will be able to identify the level of validation
effort needed.

Earlier, Jill determined that for the current process, there is low residual process risk. She thus feels
that little detail or formality is necessary in the validation effort. Jill knows that it is important to define
user business process requirements and software requirements for the new system. However, she
notes that it is a low-risk system and does not believe separate documents with separate sign-offs on
each document are necessary. Therefore, |ill decides to combine user business process requirements,
software requirements and the test plan into a single document.

Because the new system has such a low risk, Jill decides that extensive management review of the
validation effort is unnecessary and that approvals by the manager of manufacturing and the quality
assurance representative are sufficient. However, to ensure that the user requirements are correct, she
adds reviews by a representative operator in the process.

Jill starts her draft of the validation plan using Hi-Quality’s standard format for validation plans. Some
sections of the validation plan are still empty; Jill will complete the empty sections after the initial
system design is approved.

Defining system and software requirements

Jill then turns to the system and software requirements. She decides that the software requirements
will include the P and P process or system steps along with an interface specification for how the
P and P system will interface with stations 11 and 12. The system requirements include speed and
accuracy for the P and P system movement. To reduce the risk of harm, Jill adds a safety requirement to
provide a physical barrier between the operator and the P and P arm.

Establishing confidence and control over the software

Jill should now decide on the approach and technology she should use to buy the new system. Given
that the business requirements are very simple, there will be a low transaction volume. Because the
new system is low risk, Jill decides to purchase a third-party P and P system. For reasons of price and
quality, she decides to purchase the P and P system from Controlsys Inc., the industry leader in P and P
systems.

Controlsys is an outside system vendor. Hence, Jill should now decide what types of activities she should
perform to establish confidence in Controlsys. She evaluates the information she has on Controlsys.
Jill notes that Controlsys has a widely used P and P product with a strong record. In the past, problems
and issues with the product have been quickly identified and publicized on Internet message boards.
A review of this information shows that there are only a few minor known issues and Jill confirms
that these issues are not related to her intended use of the software. In addition, Controlsys offers an
automated installation qualification/operational qualification/performance qualification (IQ/0Q/
PQ) test suite. Given the company’s history and the fact that the P and P system is a low-risk system,
Jill decides that she will not need to perform an on-site vendor audit for Controlsys. She approves
Controlsys as the vendor.

82 © IS0 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

Analysing software failure risks

Jill has already determined that the business process being automated is of low risk, but she still needs
to analyse the risk of a software failure. She decides to use a quantitative risk model and ranks the new
system as follows.

— Jill ranks “severity” as low (3) on a scale of 1 to 10 because software failure would be detected by
downstream activities.

— Sheranks “likelihood” as low (1) because the system design is quite simple, making it less likely that
all critical bugs would not be caught during testing.

— She calculates a risk score of 4, which translates to a low-risk classification.
Therefore, Jill decides to perform validation tasks that are appropriate to a low level of risk.
Finishing the validation plan

Jill has now defined the software requirements, selected the implementation approach and analysed
the software risk. She therefore has enough information to finish the validation plan.

Because the proposed system has low residual risk,]ill selects the following tools for the remainder of
the development and validation effort.

— Design, development, and configuration tools:

— software architecture documentation and review;

— traceability matrix (integrated into the requirements specification);

— risk control measures will be documented in the user specification.
— Test tools:

— integration test (documented in the requirements specification);

— interface test (documented in the requirements specification);

— software system test (documented in the requirements specification).
— Deployment tools:

— user procedure review;

— internal training for the application;

— vendor-supplied test suite (from Controlsys).
Planning for maintenance

Jill now considers what activities will be appropriate to ensure the system quality once the
system is deployed. Because of the low residual risk of the system, she follows the manufacturer’s
recommendations when adding calibration of the movement mechanism to the calibration schedule. Jill
puts the system on the company’s longest cycle for validation review (3 years).

Critical thinking review

Finally, Jill asks herself if she has considered all the elements required to ensure that she has the correct
level of confidence in her validation approach. She concludes that the chosen and completed validation
activities provide an acceptable level of confidence that the software will perform as intended.

© IS0 2017 - All rights reserved 83

ISO/TR 80002-2:2017(E)

1]
2]
3]

17]

8]

9]
[10]

[11]

84

Bibliography

[SO 9000, Quality management systems — Fundamentals and vocabulary
ISO 12207, Systems and software engineering — Software life cycle processes

ISO 13485:2016, Medical devices — Quality management systems — Requirements for regulatory
purposes

ISO 14971:2007, Medical devices — Application of risk management to medical devices
[SO/IEC Guide 51, Safety aspects — Guidelines for their inclusion in standards

IEC 62304:2006/AMD1:2015, Medical device software — Software life cycle processes —
Amendment 1

IEC/TR 80002-1, Medical device software — Part 1. Guidance on the application of ISO 14971 to
medical device software

National Institute of Standards and Technology (NIST) Special Publication 500-234, Reference

Information for the Software Verification and Validation Process, Dolores R. Wallace, Laura M.
Ippolito, Barbara Cuthill, March 19, 1996

Software Engineering Institute. Capability Maturity Model Integration (CMMI)

PRESSMAN R. Software Engineering, A Practitioner’s Approach. McGraw-Hill, Inc, Third
Edition, 1992

Principles of Medical Devices Classification, GHTF/SG1/N77, 2012

© ISO 2017 - All rights reserved

ISO/TR 80002-2:2017(E)

ICS 11.040.01; 35.240.80
Price based on 84 pages

© IS0 2017 - All rights reserved

